University of SaskatchewanHARVEST
  • Login
  • Submit Your Work
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      The thermodynamic model for the recA/lexA complex formation

      Thumbnail
      View/Open
      IAM-2006-RecA-LexA-complex-model.pdf (3.500Mb)
      Date
      2006-07-31
      Author
      Moya, Ignace Adolfo
      Type
      Thesis
      Degree Level
      Masters
      Metadata
      Show full item record
      Abstract
      Escherichia coli RecA is a versatile protein that is involved in homologous recombination, and coordination of both the DNA damage response and translesion synthesis. Single-stranded DNA (ssDNA) that is generated at the site of double-stranded breaks serves as a signal to activate RecA. This allows RecA to form a long helical filament on the ssDNA, which is required in recombination, hydrolysis of ATP, and mediating the self-cleavage of some ser-lys dyad proteins such as the LexA repressor. In this thesis, the formation of the RecA/LexA complex did not require preactivation by ssDNA, instead a volume excluding agent in the presence of LexA was able to stimulate its formation. These preliminary results led to a hypothesis that the formation of the RecA/LexA complex is a thermodynamic process that involves three steps: (1) a change in RecA’s conformation towards the active form, (2) a change in LexA’s conformation towards the cleavable form (i.e. burial of the ser-lys dyad catalytic residues), and (3) the binding between the active form of RecA and the cleavable form of LexA. Evidence for this model was shown by the ability of either NaCl, LexA K156A, an ATP substrate, or a volume excluding agent to enhance the stability of the RecA/LexA complex, which was detected by both the ATPase and coprotease assays. Hyper-active RecA mutants, isolated form the yeast two-hybrid screen, were also tested, however they did not enhance the stability of the complex. Additionally, RecA’s binding preference for the monomer or dimer form of LexA was examined, since it is unknown which species of LexA is able to enhance the stability of the complex. To generate the monomer form of LexA, single point mutations were introduced at the dimer interface of the protein such that its dimerization was disrupted by charge-charge repulsions. Based on the inhibition assay, RecA was found to bind preferentially to dimer form and not the monomer form of LexA, possible reasons for these results are discussed.
      Degree
      Master of Science (M.Sc.)
      Department
      Biochemistry
      Program
      Biochemistry
      Supervisor
      Luo, Yu
      Committee
      Roesler, William J.; Khandelwal, Ramji L.; Geyer, C. Ronald; Bull, Harold
      Copyright Date
      July 2006
      URI
      http://hdl.handle.net/10388/etd-08182006-191437
      Subject
      repressor
      DNA damage
      RecA
      LexA
      recombinase
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      The University of Saskatchewan's main campus is situated on Treaty 6 Territory and the Homeland of the Métis.

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy