University of SaskatchewanHARVEST
  • Login
  • Submit Your Work
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      The conversion of petroleum residues to asphalt by air oxidation

      Thumbnail
      View/Open
      Heyding_Robert_Donald_1949_sec.pdf (8.528Mb)
      Date
      1949
      Author
      Heyding, Robert Donald
      Type
      Thesis
      Degree Level
      Masters
      Metadata
      Show full item record
      Abstract
      The known chemistry of asphalts is reviewed, including the concepts of the colloidal state, the proposed structures for the resin and asphaltene molecules, and the oxidation reactions taking place in asphalts on air blowing and on weathering. Experiments on the blowing of Lloydminster reduced crude with nitrogen, air and oxygen are reported. Results of the fractionation of the asphalt residues obtained into oils, resins and asphaltenes are recorded. The oxygen content of these three fractions for each of the blown residues is reported. From these investigations, evidence is presented to show that with the blowing conditions used, the primary oxidation reaction is one resulting in dehydrogenation of the asphalt molecules. An increase in asphaltene content on blowing at the expense of the oils and resins is observed. The oxygen determinations indicate that the asphalt increases in oxygen content. Of the three fractions, the resins are the only bodies to increase in oxygen content, the oil and asphaltene content remaining essentially constant. This is regarded as indicating instability of oxidized oil molecules, and the formation of asphaltene molecules containing oxygen in the same proportion as the original asphaltenes. Based on the comparison of the observed oxidation characteristics to the oxidation characteristics of pure hydrocarbons, the suggestion is made that the molecules undergoing oxidation are polynuclear aromatic or aromatic naphthenic compounds. Suggestions for further investigations following this method of attack on the study of this oxidation reaction are outlined.
      Degree
      Master of Science (M.Sc.)
      Department
      Chemistry
      Program
      Chemistry
      Supervisor
      Graham, W.
      Committee
      Harris, G. M.
      Copyright Date
      1949
      URI
      http://hdl.handle.net/10388/etd-08182010-101314
      Subject
      chemical engineering
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      The University of Saskatchewan's main campus is situated on Treaty 6 Territory and the Homeland of the Métis.

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy