University of SaskatchewanHARVEST
  • Login
  • Submit Your Work
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      Invariant Lie polynomials in two and three variables.

      Thumbnail
      View/Open
      masterthesis.pdf (539.4Kb)
      Date
      2009
      Author
      Hu, Jiaxiong
      Type
      Thesis
      Degree Level
      Masters
      Metadata
      Show full item record
      Abstract
      In 1949, Wever observed that the degree d of an invariant Lie polynomial must be a multiple of the number q of generators of the free Lie algebra. He also found that there are no invariant Lie polynomials in the following cases: q = 2, d = 4; q = 3, d = 6; d = q ≥ 3. Wever gave a formula for the number of invariants for q = 2 in the natural representation of sl(2). In 1958, Burrow extended Wever’s formula to q > 1 and d = mq where m > 1. In the present thesis, we concentrate on finding invariant Lie polynomials (simply called Lie invariants) in the natural representations of sl(2) and sl(3), and in the adjoint representation of sl(2). We first review the method to construct the Hall basis of the free Lie algebra and the way to transform arbitrary Lie words into linear combinations of Hall words. To find the Lie invariants, we need to find the nullspace of an integer matrix, and for this we use the Hermite normal form. After that, we review the generalized Witt dimension formula which can be used to compute the number of primitive Lie invariants of a given degree. Secondly, we recall the result of Bremner on Lie invariants of degree ≤ 10 in the natural representation of sl(2). We extend these results to compute the Lie invariants of degree 12 and 14. This is the first original contribution in the present thesis. Thirdly, we compute the Lie invariants in the adjoint representation of sl(2) up to degree 8. This is the second original contribution in the present thesis. Fourthly, we consider the natural representation of sl(3). This is a 3-dimensional natural representation of an 8-dimensional Lie algebra. Due to the huge number of Hall words in each degree and the limitation of computer hardware, we compute the Lie invariants only up to degree 12. Finally, we discuss possible directions for extending the results. Because there are infinitely many different simple finite dimensional Lie algebras and each of them has infinitely many distinct irreducible representations, it is an open-ended problem.
      Degree
      Master of Science (M.Sc.)
      Department
      Mathematics and Statistics
      Program
      Mathematics and Statistics
      Supervisor
      Murray, Bremner
      Committee
      Chris, Soteros; Martin, John
      Copyright Date
      2009
      URI
      http://hdl.handle.net/10388/etd-08192009-110822
      Subject
      Free Lie algebra
      Invariant theory
      Representation theory
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy