University of SaskatchewanHARVEST
  • Login
  • Submit Your Work
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      Dendritic cell based cancer vaccines using adenovirally mediated expression of the HER-2/neu gene and apoptotic tumor cells expressing heat shock protein 70

      Thumbnail
      View/Open
      Chan-Thesis-1.pdf (5.902Mb)
      Date
      2006-08-17
      Author
      Chan, Tim
      Type
      Thesis
      Degree Level
      Doctoral
      Metadata
      Show full item record
      Abstract
      Human Epidermal Growth Factor Receptor 2 (HER-2/neu) is a breast tumor antigen (Ag) commonly overexpressed in 30% of breast cancer cases. Both HER-2/neu-targeted DNA-based and transgene modified dendritic cell (DC)-based vaccines are potent elements in eliciting HER-2/neu specific antitumor immune responses; however, there has been no side-by-side comparison of these two different immunization methods. We utilized an in vivo murine tumor model expressing the rat neu Ag to compare the immunization efficacy between DC transduced with replication-deficient adenovirus containing neu (AdVneu), to form DCneu, and plasmid DNA (pcDNA) vaccine. DCneu displayed an upregulation of immunologically important molecules and inflammatory cytokines expression such as IL-6 that partially mediated conversion of the regulatory T (Tr) cell suppression. Wildtype FVB/N mice immunized with DCneu induced stronger HER-2/neu-specific humoral and cellular immune responses compared to plasmid DNA immunized mice. Furthermore, mice immunized with DCneu remained completely protected from tumor challenge compared to partial or no protection observed in DNA immunized mice in two tumor animal models. In FVBneuN transgenic mice, which develop spontaneous breast tumors at 4-8 months of age, DCneu significantly delayed tumor onset when immunization conducted in mice at a younger age. Taken together, we demonstrated that a HER-2/neu-gene modified DC vaccine is more potent than a plasmid DNA vaccine in inducing neu specific immune responses resulting in greater protective and preventative effects in the tumor models examined. In another study, we examined the use of a DC-based cancer vaccine involving the phagocytosis of apoptotic tumor cells expressing heat shock protein 70 (HSP70). The dual role of HSP70, as an antigenic peptide chaperone and danger signal, makes it especially important in DC-based vaccination. In this study, we investigated the impacts of apoptotic transgenic MCA/HSP tumor cells expressing HSP70 on DC maturation, T cell stimulation and overall vaccine efficacy. We found that DC with phagocytosis of MCA/HSP in the early phase of apoptosis expressed more peptide-major histocompatibility class (pMHC) I complexes, stimulated stronger cytotoxic T lymphocytes (CTL) responses and induced greater immune protection against MCA tumor cell challenge, compared to mice immunized with DC that phagocytosed MCA/HSP cells in the late phase of apoptosis. Taken together, our data demonstrated that HSP70 expression on apoptotic tumor cells stimulated DC maturation and DC with phagocytosis of apoptotic tumor cells expressing HSP70 in early phase of apoptosis more efficiently induced tumor-specific CTL responses and immunity than DC with phagocytosis of apoptotic tumor cells in late phase of apoptosis. Overall, we have examined variations in designing DC-based cancer vaccines in two completely different model systems. Taken together, our results may have an important impact in designing DC-based antitumor vaccines.
      Degree
      Doctor of Philosophy (Ph.D.)
      Department
      Pathology
      Program
      Pathology
      Supervisor
      Xiang, Jim
      Committee
      Saxena, Anurag; Sami, Amer; Qureshi, Mabood; Krahn, John; Bathe, Oliver; Sharma, Rajendra K.
      Copyright Date
      August 2006
      URI
      http://hdl.handle.net/10388/etd-08232006-203717
      Subject
      replication deficient adenovirus
      cancer vaccine
      breast cancer
      dendritic cell
      HER-2/neu
      apoptosis
      Heat Shock Protein 70
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      The University of Saskatchewan's main campus is situated on Treaty 6 Territory and the Homeland of the Métis.

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy