University of SaskatchewanHARVEST
  • Login
  • Submit Your Work
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      Development of a low level autonomous machine

      Thumbnail
      View/Open
      griffith_j.pdf (2.116Mb)
      Date
      2008
      Author
      Griffith, Jason Carl
      Type
      Thesis
      Degree Level
      Masters
      Metadata
      Show full item record
      Abstract
      An autonomous machine is a machine that can navigate through its environment without human interactions. These machines use sensors to sense the environment and have computing abilities for receiving and interpreting the sensory data as well as for controlling their displacement. At the University of Saskatchewan (Saskatoon, Canada), a low level autonomous machine was developed. This low level machine was the sensor system for an autonomous machine. The machine was capable of sensing the environment and carrying out actions based on commands sent to it. This machine provided a sensing and control layer, but the path planning (decision making) part of the autonomous machine was not developed.This autonomous machine was developed on a Case IH DX 34H tractor with the purpose of providing a machine for testing software and sensors in a true agricultural environment. The tractor was equipped with sensors capable of sensing the speed and heading of the tractor. A control architecture was developed that received input commands from a human or computer in the form of a target heading and speed. The control architecture then adjusted controls on the tractor to make the tractor reach and maintain the target heading and speed until a new command was provided. The tractor was capable of being used in all kinds of weather, although some minor issues arose when testing in rain and snow. The sensor platform developed was found to be insufficient for proper control. The control structure appeared to work correctly, but was hindered by the poor sensor platform performance.
      Degree
      Master of Science (M.Sc.)
      Department
      Agricultural and Bioresource Engineering
      Program
      Agricultural and Bioresource Engineering
      Supervisor
      Roberge, Martin
      Committee
      Maule, Charles P.; Laguë, Claude; Daku, Brian L.
      Copyright Date
      2008
      URI
      http://hdl.handle.net/10388/etd-08252008-123054
      Subject
      vehicle navigation
      tractor controller
      autonomous machine
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      The University of Saskatchewan's main campus is situated on Treaty 6 Territory and the Homeland of the Métis.

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy