University of SaskatchewanHARVEST
  • Login
  • Submit Your Work
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      An experimental investigation of the flow around impulsively started cylinders

      Thumbnail
      View/Open
      TonuiTHESIS.pdf (8.411Mb)
      Date
      2009-08
      Author
      Tonui, Nelson Kiplanga't
      Type
      Thesis
      Degree Level
      Masters
      Metadata
      Show full item record
      Abstract
      A study of impulsively started flow over cylindrical objects is made using the particle image velocimetry (PIV) technique for Reynolds numbers of Re = 200, 500 and 1000 in an X-Y towing tank. The cylindrical objects studied were a circular cylinder of diameter, D = 25.4 mm, and square and diamond cylinders each with side length, D = 25.4 mm. The aspect ratio, AR (= L/D) of the cylinders was 28 and therefore they were considered infinite. The development of the recirculation zone up to a dimensionless time of t* = 4 following the start of the motion was examined. The impulsive start was approximated using a dimensionless acceleration parameter, a*, and in this research, the experiments were conducted for five acceleration parameters, a* = 0.5, 1, 3, 5 and 10. The study showed that conditions similar to impulsively started motion were attained once a*≥3. A recirculation zone was formed immediately after the start of motion as a result of flow separation at the surface of the cylinder. It contained a pair of primary eddies, which in the initial stages (like in this case) were symmetrical and rotating in opposite directions. The recirculation zone was quantified by looking at the length of the zone, LR, the vortex development, both in terms of the streamwise location and the cross-stream spacing of the vortex centers, a and b, respectively, as well as the circulation (strength) of the primary vortices, Γ. For all types of cylinders examined, the length of the recirculation zone, the streamwise location of the primary eddies and the circulation of the primary eddies increase as time advances from the start of the impulsive motion. They also increase with an increase in the acceleration parameter, a*, until a* = 3, beyond which there is no more change, since the conditions similar to impulsively started conditions have been achieved. The cross-stream spacing of the primary vortices is relatively independent of Re, a* and t* but was different for different cylinders. Irrespective of the type of cylinder, the growth of the recirculation zone at Re = 500 and 1000 is smaller than at Re = 200. The recirculation zone of a diamond cylinder is much larger than for both square and circular cylinders. The square and diamond cylinders have sharp edges which act as fixed separation points. Therefore, the cross-stream spacing of the primary vortex centers are independent of Re, unlike the circular cylinder which shows some slight variation with changes in Reynolds number. The growth of the recirculation is more dependent on the distance moved following the start of the impulsive motion; that is why for all types of cylinders, the LR/D, a/D and Γ/UD profiles collapse onto common curves when plotted against the distance moved from the start of the motion.
      Degree
      Master of Science (M.Sc.)
      Department
      Mechanical Engineering
      Program
      Mechanical Engineering
      Supervisor
      Sumner, David
      Copyright Date
      August 2009
      URI
      http://hdl.handle.net/10388/etd-08252009-124243
      Subject
      Recirculation Zone Features
      Infinite Cylinders
      Acceleration Parameter
      Impulsively Started Flow
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy