University of SaskatchewanHARVEST
  • Login
  • Submit Your Research
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      Using stable isotopes to develop a regional hydrogeological model and characterize nitrate sources in groundwater

      Thumbnail
      View/Open
      PanaMScThesis2009.pdf (5.544Mb)
      Date
      2009-06
      Author
      Athanasopoulos, Panagiota
      Type
      Thesis
      Degree Level
      Masters
      Metadata
      Show full item record
      Abstract
      Semi-arid regions, like the Okanagan Basin of British Columbia, Canada, are often faced with the difficulty of managing limited groundwater and surface water resources while accommodating rapid population growth and increasing land development. In the South Okanagan Basin, a better understanding of groundwater recharge sources, groundwater availability and susceptibility of water supplies to anthropogenic contamination is needed to best direct and protect the region’s water resources. The purpose of this study was: (1) to characterize the regional hydrogeological setting of the South Okanagan Basin by establishing an isotopic and geochemical framework that included precipitation and surface waters of the Okanagan Basin and groundwaters of the South Okanagan Basin; and (2) to characterize nitrate contamination and its sources in shallow groundwaters of the Osoyoos area. Stable isotopes of water, nitrate and dissolved oxygen, groundwater chemistry, water levels and enriched tritium, tritium/helium and/or radiocarbon age dating techniques were used. Two provisional local meteoric water lines were established for the Okanagan Basin: ẟ2H=6.06ẟ18O–31.21 (Osoyoos) and ẟ2H=7.03ẟ18O-12.68 (West Kelowna). Surface waters of the Okanagan River system were sources of irrigation water in the South Okanagan Basin valley and irrigation-return flow was the primary source of recharge for shallow groundwaters. Fractured bedrock in highlands east and west of the valley were not a significant source of recharge for shallow valley groundwater, however, may recharge deeper, or basal, valley deposits. As irrigation-return flow controls shallow groundwater dynamics in the valley sediments, groundwater quality is susceptible to anthropogenic contamination. In Osoyoos, nitrate was present in shallow groundwaters at concentrations of up to 24.4 mg/l N as a result of fertilizer nitrogen applied at the soil surface, mostly at orchards. Two agricultural drainage systems in north Osoyoos discharge roughly 1,900 kg N/year from nitrate-contaminated groundwater directly into Osoyoos Lake and may contribute in part to its eutrophication.
      Degree
      Master of Science (M.Sc.)
      Department
      Geological Sciences
      Program
      Geological Sciences
      Supervisor
      Wassenaar, Len; Hendry, M. Jim
      Committee
      Knight, Diane; Barbour, S. L.; Ansdell, Kevin
      Copyright Date
      June 2009
      URI
      http://hdl.handle.net/10388/etd-08272009-114503
      Subject
      Isotopes
      Precipitation
      Regional Hydrogeology
      Nitrate
      Groundwater
      Semi-arid
      Agricultural Drainage
      Surface Water
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy