University of SaskatchewanHARVEST
  • Login
  • Submit Your Work
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      The relationship between slope stability and pore-water pressure in highly plastic clay in the Carrot River Basin

      Thumbnail
      View/Open
      Pauls_Gordon_James_1995_sec.pdf (41.82Mb)
      Date
      1995
      Author
      Pauls, Gordon James
      Type
      Thesis
      Degree Level
      Masters
      Metadata
      Show full item record
      Abstract
      Slope instability in glaciolacustrine clays has been a problem since 1950 at two sites in the Carrot River valley. Movement at the Carrot River and Smoky Burn bridge sites persists, compromising the integrity of the bridge structures. In addition, movement persists along an embankment constructed between 1990 and 1992. Residual shear strength parameters, Φᵣ' = 7.6° with c' = 0 were determined for three landslides by back analysis. Laboratory tests showed Φᵣ' ranged from 6.0 to 9.1 °. Pore-water pressure distributions were characterized with models of steady state groundwater flow, drawdown following flooding, and of induced pore-water pressure caused by construction. The flood hydrograph was represented as a total head versus time boundary condition for the transient groundwater seepage model. Factors of safety were calculated throughout the course of the flood event with pore-water pressures characterized by the transient seepage model. Factors of safety predicted with the transient seepage model following drawdown were greater than for traditional approaches of rapid drawdown analyses used for dams and reservoirs. This is supported by the observation that, historically, flooding has not resulted in catastrophic failure of slopes. Heavy precipitation during flooding was found to decrease stability according to the modelling. Pore-water pressure induced during construction of an embankment was predicted with an effective stress analysis utilizing the pore pressure coefficients A and B. Predicted pore-water pressure induced along the shear zone of the landslide compared favourably with pore-pressure measured during construction. Stabilization of active landslides at Carrot River and Smoky Burn bridge abutments may be achieved with the construction of a berm in the river channel to resist landslide movement. The berm would consist of granular fill, with a culvert to discharge low flows. The berm would function as a weir during flooding.
      Degree
      Master of Science (M.Sc.)
      Department
      Civil Engineering
      Program
      Civil Engineering
      Supervisor
      Sauer, E. K.
      Committee
      Widger, R. A.; Pufahl, D. E.; Fredlund, D. G.; Barbour, S. L.
      Copyright Date
      1995
      URI
      http://hdl.handle.net/10388/etd-08272012-135813
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      The University of Saskatchewan's main campus is situated on Treaty 6 Territory and the Homeland of the Métis.

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy