University of SaskatchewanHARVEST
  • Login
  • Submit Your Research
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      Segmentation of human ovarian follicles from ultrasound images acquired in vivo using geometric active contour models and a naïve Bayes classifier

      Thumbnail
      View/Open
      MSc_Thesis_Na_Harrington.pdf (9.615Mb)
      Date
      2007
      Author
      Harrington, Na
      Type
      Thesis
      Degree Level
      Masters
      Metadata
      Show full item record
      Abstract
      Ovarian follicles are spherical structures inside the ovaries which contain developing eggs. Monitoring the development of follicles is necessary for both gynecological medicine (ovarian diseases diagnosis and infertility treatment), and veterinary medicine (determining when to introduce superstimulation in cattle, or dividing herds into different stages in the estrous cycle).Ultrasound imaging provides a non-invasive method for monitoring follicles. However, manually detecting follicles from ovarian ultrasound images is time consuming and sensitive to the observer's experience. Existing (semi-) automatic follicle segmentation techniques show the power of automation, but are not widely used due to their limited success.A new automated follicle segmentation method is introduced in this thesis. Human ovarian images acquired in vivo were smoothed using an adaptive neighbourhood median filter. Dark regions were initially segmented using geometric active contour models. Only part of these segmented dark regions were true follicles. A naïve Bayes classifier was applied to determine whether each segmented dark region was a true follicle or not. The Hausdorff distance between contours of the automatically segmented regions and the gold standard was 2.43 ± 1.46 mm per follicle, and the average root mean square distance per follicle was 0.86 ± 0.49 mm. Both the average Hausdorff distance and the root mean square distance were larger than those reported in other follicle segmentation algorithms. The mean absolute distance between contours of the automatically segmented regions and the gold standard was 0.75 ± 0.32 mm, which was below that reported in other follicle segmentation algorithms.The overall follicle recognition rate was 33% to 35%; and the overall image misidentification rate was 23% to 33%. If only follicles with diameter greater than or equal to 3 mm were considered, the follicle recognition rate increased to 60% to 63%, and the follicle misidentification rate increased slightly to 24% to 34%. The proposed follicle segmentation method is proved to be accurate in detecting a large number of follicles with diameter greater than or equal to 3 mm.
      Degree
      Master of Science (M.Sc.)
      Department
      Computer Science
      Program
      Computer Science
      Supervisor
      Eramian, Mark G.
      Committee
      Pierson, Roger A.; Neufeld, Eric
      Copyright Date
      2007
      URI
      http://hdl.handle.net/10388/etd-09122007-164822
      Subject
      Naïve Bayes Classifier
      Ultrasound Images
      Follicle Segmentation
      Geometric Active Contour Models
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy