University of SaskatchewanHARVEST
  • Login
  • Submit Your Work
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      Structural analysis of monomeric isocitrate dehydrogenase from corynebacterium glutamicum

      Thumbnail
      View/Open
      master.pdf (5.501Mb)
      Date
      2004-09-10
      Author
      Imabayashi, Fumie
      Type
      Thesis
      Degree Level
      Masters
      Metadata
      Show full item record
      Abstract
      In this research project, structural aspects of monomeric NADP+-dependent isocitrate dehydrogenase from Corynebacterium glutamicum (CgIDH) are investigated together with site-directed mutagenesis and fluorescence spectroscopy studies. CgIDH, one of the enzymes of the Krebs cycle, catalyzes the decarboxylation of isocitrate into α-ketoglutarate, which in some bacteria and plants regulates the flow of carbon into either the Krebs cycle or the glyoxylate bypass depending on the available carbon source. The structure of CgIDH complexed with Mg2+ has been determined at 1.75 Å resolution using X-ray crystallography. In contrast to the closed conformation of published structures of monomeric NADP+-dependent IDH from Azotobactor vinelandii complexed with either isocitrate-Mn2+ or NADP+, the structure of CgIDH complexed with Mg2+ demonstrates the open conformation. The superimposed structure of CgIDH complexed with Mg2+ onto the structures of AvIDH complexes reveals that Domain II is rotated ~24° or ~35º, respectively, relative to Domain I when isocitrate-Mn2+ or NADP+ is bound, resulting in the closure of the active site between the two domains. Fluorescence spectroscopic studies support the proposal that the presence of isocitrate or NADP+ could mediate the conformational changes in CgIDH. In addition, three CgIDH mutants (S130D, K253Q, and Y416T) were created based on the structural analysis and previous mutagenesis studies of homodimeric NADP+-dependent IDH. Both the specific activities and the fluorescence spectra of these CgIDH mutants elucidate the roles of these active site residues in CgIDH catalysis. It has been suggested that the conformational changes observed in the presence of the substrate(s) may regulate enzymatic activity in CgIDH, in contrast to homodimeric NADP+-dependent IDH in Escherichia coli, where the phosphorylation cycle controls activity. It is also presumed that both Lys253 and Tyr416 may play critical roles in CgIDH activity, as do the equivalent residues in homodimeric IDH from porcine heart mitochondria. Similar structural features and conformational changes among monomeric CgIDH and homodimeric NADP+-dependent IDH enzymes suggest the phylogenetic relationships among various monomeric and homodimeric NADP+-dependent IDH from different sources.
      Degree
      Master of Science (M.Sc.)
      Department
      Biochemistry
      Program
      Biochemistry
      Committee
      Khandelwal, Ramji L.; Delbaere, Louis T. J.; Napper, Scott
      Copyright Date
      September 2004
      URI
      http://hdl.handle.net/10388/etd-09132004-124844
      Subject
      conformational changes
      protein crystallography
      mutagenesis
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy