Show simple item record

dc.contributor.advisorBillinton, Royen_US
dc.creatorHuang, Dangeen_US
dc.date.accessioned2005-09-19T16:48:23Zen_US
dc.date.accessioned2013-01-04T04:59:22Z
dc.date.available2005-09-20T08:00:00Zen_US
dc.date.available2013-01-04T04:59:22Z
dc.date.created2005-09en_US
dc.date.issued2005-09-12en_US
dc.date.submittedSeptember 2005en_US
dc.identifier.urihttp://hdl.handle.net/10388/etd-09192005-164823en_US
dc.description.abstractThe primary function of a power system is to supply its customers with electrical energy as economically as possible and with acceptable reliability and quality. Generating capacity adequacy evaluation is the oldest and most extensively studied aspect of power system reliability assessment. A wide range of methods have been developed to perform this evaluation. Two computer programs were developed based on the analytical and simulation techniques and used as tools in this research work. A number of basic considerations in generating capacity adequacy evaluation are investigated. Generating unit residence time distributions and peaking load units are incorporated in the analysis. Two commonly encountered misconceptions regarding the basic system reliability indices are examined by applying the two programs to two reliability test systems. Reliability index probability distributions can be used to supplement the information provided by the expected index values. The concept of creating distributions and the additional information that can be obtained is illustrated in this thesis. Generating unit residence time distributions are generally categorized as being either exponential or non-exponential in form. The exponential distribution is utilized, however, in virtually all practical system studies. The impacts on the system reliability of non-exponential unit state residence time distributions are examined in this research. Peaking load units and base load units have different operating characteristics. The functions of peaking load units vary with changes in the system operating conditions. This is examined in this research. The conclusions and techniques presented in this thesis should prove valuable in power system planning and operation.en_US
dc.language.isoen_USen_US
dc.subjectPeaking Load Unitsen_US
dc.subjectReliability Evaluationen_US
dc.subjectDerated Statesen_US
dc.titleBasic considerations in electrical generating capacity adequacy evaluationen_US
thesis.degree.departmentElectrical Engineeringen_US
thesis.degree.disciplineElectrical Engineeringen_US
thesis.degree.grantorUniversity of Saskatchewanen_US
thesis.degree.levelMastersen_US
thesis.degree.nameMaster of Science (M.Sc.)en_US
dc.type.materialtexten_US
dc.type.genreThesisen_US
dc.contributor.committeeMemberKarki, Rajeshen_US
dc.contributor.committeeMemberHertz, P. Barryen_US
dc.contributor.committeeMemberGokaraju, Ramakrishnaen_US
dc.contributor.committeeMemberDodds, David E.en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record