University of SaskatchewanHARVEST
  • Login
  • Submit Your Work
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      Body fluid regulation during water deprivation : role of solute balance in osmoregulation

      Thumbnail
      View/Open
      nq24038.pdf (6.638Mb)
      Date
      1996-01-01
      Author
      Schoorlemmer, Gerhardus Hermanus M.
      Type
      Thesis
      Degree Level
      Doctoral
      Metadata
      Show full item record
      Abstract
      Volume and composition of the body fluid compartments are kept within narrow limits. This is done by changes in intake and excretion of water and salt. I found that changes in food intake and salt excretion play an important role in body fluid regulation during water deprivation and investigated the mechanisms of these changes. Urine volume changed little in rats deprived of water for 10 hours. The main osmoregulatory response during water deprivation was a loss of solute from the body. Food intake fell by 43%, which reduced the load of solute to the tissues and allowed absorption of water already in the gut. Water deprived rats also excreted more sodium, potassium and chloride. Thus, although rats lost 8% of their body water during 10 hours of water deprivation, plasma tonicity rose by only 2%. On rehydration, when no food was present rats rapidly reduced excretion of sodium, potassium and chloride. Rats allowed water and food drank more and excreted more solute. These changes contribute to restoration of the body fluid compartments. Brain infusions caused changes in electrolyte excretion that were similar to those seen during water deprivation and rehydration. Electrolyte excretion increased during infusion (1 $\mu$L/min for 2 h) of cerebrospinal fluid (CSF) with 300 mM NaCl in the lateral ventricle. Infusion of low-sodium CSF reduced electrolyte excretion in water deprived rats, but had little effect in rats that were not water deprived. The time course of the changes after rehydration and brain infusions was the same, and the same solutes were involved. This suggests the mechanisms are similar. Low-sodium CSF made isotonic with mannitol had the same effect as hypotonic low-sodium CSF. The sensor probably monitors brain interstitial fluid, not CSF. Food intake fell within 1 hour of water deprivation. Meals were smaller, but meal frequency did not change. Dehydration anorexia is caused by a sensor located in the gut, portal circulation or liver, because infusion of water in the stomach, jejunum or cecum (10 mL/6 h) restored food intake in rats not allowed to drink, but intravenous infusions had no effect. Intravenous infusions did not alter urinary water loss and did not alter food intake in rats allowed to drink.
      Degree
      Doctor of Philosophy (Ph.D.)
      Department
      Physiology
      Program
      Physiology
      Committee
      Evered, Mark
      Copyright Date
      January 1996
      URI
      http://hdl.handle.net/10388/etd-10132004-103233
      Subject
      Solute Balance
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy