University of SaskatchewanHARVEST
  • Login
  • Submit Your Work
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      Crystallographic studies of Escherichia coli phosphoenolpyruvate carboxykinase

      Thumbnail
      View/Open
      nq23905.pdf (7.179Mb)
      Date
      1996-04-01
      Author
      Matte, Alan Michael
      Type
      Thesis
      Degree Level
      Doctoral
      Metadata
      Show full item record
      Abstract
      The crystal structure of ATP-dependent phosphoenolpyruvate carboxykinase (ATP-oxaloacetate carboxy-lyase, (transphosphorylating), E.C. 4.1.1.49; PCK) from Escherichia coli K12 has been determined using a combination of multiple isomorphous replacement and density modification, and refined to a R-index of 0.202 (R-free = 0.244) at 1.9 A resolution. PCK catalyses the decarboxylation and ATP-dependent phosphorylation of oxaloacetate to form phosphoenolpyruvate, the first committed step of gluconeogenesis in E. coli. Each PCK molecule consists of a 275 residue N-terminal and 265 residue C-terminal ar mononucleotide-binding domain, with the active site located within a cleft between the two domains. PCK is an open-faced, mixed $\alpha/\beta$ protein with a unique overall tertiary structure. The putative phosphate-binding region of the ATP-binding site adopts the P-loop motif common to many ATP- and GTP-binding proteins. However, the â-sheet topology of the mononucleotide-binding fold of PCK differs from all other families within the P-loop containing nucleoside triphosphate hydrolase superfamily, suggesting PCK represents the first member of a new family of such proteins. The mononucleotide-binding domain also differs in structure from the classical mononucelotide-binding fold (CMBF), common to adenylate kinase, RecA, p21$\sp{{Ha}-ras}$, and elongation factor-Tu. Several highly-conserved amino acid residues among the ATP-dependent PCK family, including R65, Y207, K212, K213, H232, K254, T255, D269, K288 and R333 appear to make up the active site of the enzyme. A cysteine residue, C233, is located near the active site, and in the E. coli enzyme this residue is buried and is probably not involved in substrate binding or catalysis. Previous chemical modification studies, on several ATP- and GTP-dependent PCKs, have been assessed in view of these structural results. A mechanism of catalysis based on these and additional results is proposed. The structure of E. coli PCK complexed with the calcium-analogue Tb$\sp{3+}$ has been refined to an R-index of 0.205 (R-free = 0.259) at 2.5 A. Two binding sites for Tb$\sp{3+}$ have been determined, one within the active site coordinating to the side chains of K213, H232, and D269, and the other within the C-terminal domain, coordinating to the side chains of E508 and E511. No large structural movements are observed in PCK as a result of Tb$\sp{3+}$ binding, even though Ca$\sp{2+}$ is a known activator.
      Degree
      Doctor of Philosophy (Ph.D.)
      Department
      Biochemistry
      Program
      Biochemistry
      Committee
      Delbaere, Louis T. J.
      Copyright Date
      April 1996
      URI
      http://hdl.handle.net/10388/etd-10212004-000610
      Subject
      bacterial diseases
      protein binding
      crystallography
      biochemistry
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy