University of SaskatchewanHARVEST
  • Login
  • Submit Your Work
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      The characterization and calibration of the OSIRIS infrared imager

      Thumbnail
      View/Open
      thesis.pdf (4.731Mb)
      Date
      2003-10-27
      Author
      Bourassa, Adam
      Type
      Thesis
      Degree Level
      Masters
      Metadata
      Show full item record
      Abstract
      OSIRIS, a Canadian built instrument on-board the Swedish-led remote sensing satellite, Odin, consists in part of three single lens imagers that measure near infrared light from atmospheric scattering and emission. A full calibration of the imaging system is required to remove all instrument dependent effects that modify the observations. This work presents the characterization and calibration of the OSIRIS imaging system in an attempt to produce observations that are instrument independent measurements of the atmospheric brightness. The required product is the number of photons per second emitted, or scattered, from the atmosphere that are within the sampling wavelength range and incident on the detector area in the instrument field of view. A major portion of the present work involves understanding the dark current production mechanisms and the development of a technique to characterize the dark current and manufacturer imposed electronic offsets. It is demonstrated that with a current set of dark calibration images, the developed algorithm effectively removes the dark current and electronic offsets over a wide operating temperature range. The relative calibration of pixels is presented in terms of the electronic gain, or flat field response, and the angular look direction. It is apparent that a change in the relative pixel gain occurred between pre-flight calibration and the first in-flight images. However, it is shown that with a recalculation of the flat field response using in-flight images, an acceptable gain calibration is obtained. The angular look direction of the pixels is determined from the results of two separate in-flight experiments. The characterization and removal of the stray light signal is shown to be effective. Finally, the absolute calibration of the instrument is presented. While several issues remain to be addressed, the comparison with a simple atmospheric brightness model provides a first order verification of the results.
      Degree
      Master of Science (M.Sc.)
      Department
      Physics and Engineering Physics
      Program
      Physics and Engineering Physics
      Committee
      Pywell, Robert E.; Moewes, Alexander; Llewellyn, Edward J.; Koustov, Alexandre V. (Sasha); Degenstein, Douglas A.; Browne, P.; Sofko, George J.
      Copyright Date
      October 2003
      URI
      http://hdl.handle.net/10388/etd-10302003-153206
      Subject
      satellite
      Odin
      infrared
      ozone
      OSIRIS
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      The University of Saskatchewan's main campus is situated on Treaty 6 Territory and the Homeland of the Métis.

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy