University of SaskatchewanHARVEST
  • Login
  • Submit Your Work
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      Chemistry with chiral lithium amides: enantiotopic group and face-selective reactions

      Thumbnail
      View/Open
      wang_li.pdf (793.0Kb)
      Date
      2007
      Author
      Wang, Li
      Type
      Thesis
      Degree Level
      Masters
      Metadata
      Show full item record
      Abstract
      The accomplishment of the γ-alkylation reaction from β-keto esters of tropinone and the enantioselective aziridine formation from nortropinone is first reported. This opened two new paths to develop tropinone enolate chemistry. One is indirect α-alkylation of tropinone, another is the nucleophilic attack from α-C enolate to the nitrogen atom. Seven interesting chiral amines have been synthesized and applied into the enolate chemistry of two interesting precursors of synthesis of natural products: 1,4- cyclohexanedione monoethylene ketal and tropinone.The aldol reaction between the lithium enolate of 1,4-cyclohexanedione monoethylene ketal and benzaldehyde demonstrated the high diastereoselectivity (up to 98% de) and the moderate to high enantioselectivity (up to 75% ee) induced by those chiral lithium amides. On the other hand, high diastereoselectivity (up to 100% de) and the low enantioselectivity were obtained from the aldol reaction of tropinone enolate with benzaldehyde differentiated by chiral lithium amides with extra electron donor atoms. An analysis method to determine enantioselectivity from racemic α-hydroxytropinone was developed. That will, no doubt, benefit the further enantioselective α-hydroxylation reaction of tropinone.
      Degree
      Master of Science (M.Sc.)
      Department
      Chemistry
      Program
      Chemistry
      Supervisor
      Majewski, Marek
      Copyright Date
      2007
      URI
      http://hdl.handle.net/10388/etd-10312007-165406
      Subject
      lithium amide
      Enantiotopic group&face selective
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy