University of SaskatchewanHARVEST
  • Login
  • Submit Your Work
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      Convergence and stability of finite difference schemes for some elliptic equations

      Thumbnail
      View/Open
      Gupta_Murli_Manohar_sec_1971.pdf (4.390Mb)
      Date
      1971
      Author
      Gupta, Murli Manohar
      Type
      Thesis
      Degree Level
      Doctoral
      Metadata
      Show full item record
      Abstract
      The problem of convergence and stability of finite difference schemes used for solving boundary value problems for some elliptic partial differential equations has been studied in this thesis. Generally a boundary value problem is first replaced by a discretized problem whose solution is then found by numerical computation. The difference between the solution of the discretized problem and the exact solution of the boundary value problem is called the discretization error. This error is a measure of the accuracy of the numerical solution, provided the roundoff error is negligible. Estimates of the discretization error are obtained for a class of elliptic partial differential equations of order 2m (M ≥ 1) with constant coefficients in a general n-dimensional domain. This result can be used to define finite difference approximations with an arbitrary order of accuracy. The numerical solution of a discretized problem is usually obtained by solving the resulting system of algebraic equations by some iterative procedure. Such a procedure must be stable in order to yield a numerical solution. The stability of such an iteration scheme is studied in a general setting and several sufficient con­ditions of stability are obtained. When a higher order differential equation is solved numeri­cally, roundoff error can accumulate during the computations. In order to reduce this error the differential equation is sometimes replaced by several lower order differential equations. The method of splitting is analyzed for the two-dimensional biharmonic equation and the convergence of the discrete solution to the exact solution is discussed. An iterative procedure is presented for obtaining the numerical solution. It is shown that this method is also applicable to non-rectangular domains. The accuracy of numerical solutions of a nonselfadjoint elliptic differential equation is discussed when it is solved with a finite non-zero mesh size. This equation contains a parameter which may take large values. Some extensions to the two-dimensional Navier-Stokes equations are also presented.
      Degree
      Doctor of Philosophy (Ph.D.)
      Department
      Mathematics
      Program
      Mathematics
      Committee
      Manohar, R.
      Copyright Date
      1971
      URI
      http://hdl.handle.net/10388/etd-11072011-144428
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      The University of Saskatchewan's main campus is situated on Treaty 6 Territory and the Homeland of the Métis.

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy