University of SaskatchewanHARVEST
  • Login
  • Submit Your Work
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      Modeling of the piezoelectric-driven stick-slip actuators

      Thumbnail
      View/Open
      kang_d.pdf (685.7Kb)
      Date
      2007-11-23
      Author
      Kang, Dong
      Type
      Thesis
      Degree Level
      Masters
      Metadata
      Show full item record
      Abstract
      Previous studies show that the Piezoelectric-Driven Stick-Slip (PDSS) actuator is a promising device in many micropositioning and micromanipulation applications, where positioning with a long range and a high resolution is required. However, research in this area is still in its early stage and many issues remain to be addressed. One key issue is the representation of the dynamic displacement of the end-effector. It is known that such factors as the dynamics of piezoelectric actuator (PEA) and the presliding friction involved can significantly contribute to the displacement dynamics. Although this has been widely accepted, specific quantitative relationship between the aforementioned factors and the displacement dynamics has rarely been defined. The aim of this research is to develop a model to represent the displacement of the end-effecter of the PDSS actuators, in which both the presliding friction and the PEA dynamics are addressed. In order to represent the presliding friction, the models reported in literatures, including Dahl model [Olsson, et al., 1998], Reset Integrator model [Haessig and Friedland 1991], LuGre model [Canudas de Wit et al., 1995] and Elastoplastic model [Dupont et al., 2002] were reviewed and examined; and the LuGre model was chosen to be used because of its efficiency and simple formulation. On the other hand, a linear second order dynamic system model was employed to represent the combination of a PEA and its driven mechanism. On the basis of the pre-sliding friction model and the linearized PEA dynamics model, a model representative of the end-effector displacement of the PDSS actuator model was developed. In order to validate experimentally the developed PDSS model, a displacement measuring and data acquisition experiment system was established and a prototype was developed based on dSPACE and Simulink. On the prototyped actuator, two experiments were designed and conducted to identify the parameters involved in the model. One experiment is for the determination of the parameters of the second order system for the dynamics of the combination of a PEA and its driven mechanism; and other one is for the determination of the parameters of the chosen friction model. The identified parameters were then employed in the developed PDSS model to simulate the displacements and the results were compared with the experimental results that were obtained under the same operating conditions as the simulation. The comparison suggests that the model developed in this study is promising for the end-effector displacement of the PDSS actuator.
      Degree
      Master of Science (M.Sc.)
      Department
      Mechanical Engineering
      Program
      Mechanical Engineering
      Supervisor
      Chen, X.B. (Daniel)
      Committee
      Zhang, W. J. (Chris); Fotouhi, Reza
      Copyright Date
      November 2007
      URI
      http://hdl.handle.net/10388/etd-11152007-200332
      Subject
      dynamics modeling
      stick-slip motion
      presliding friction
      piezoelectric actuator
      ultraprecision positioning
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy