Show simple item record

dc.contributor.advisorAlisauskas, Ray T.en_US
dc.creatorTraylor, Joshua Jamesen_US
dc.date.accessioned2003-11-28T14:06:02Zen_US
dc.date.accessioned2013-01-04T05:09:16Z
dc.date.available2004-12-01T08:00:00Zen_US
dc.date.available2013-01-04T05:09:16Z
dc.date.created2003-06en_US
dc.date.issued2003-06-04en_US
dc.date.submittedJune 2003en_US
dc.identifier.urihttp://hdl.handle.net/10388/etd-11282003-140602en_US
dc.description.abstractPopulation surveys indicate a declining trend in abundance for the scoter genus at the continental level. Little is known about changes in life history traits responsible for the recent population decline of white-winged scoters (Melanitta fusca deglandi, hereafter scoters). Therefore, I studied nesting and duckling ecology of scoters at Redberry Lake, Saskatchewan, Canada during summers 2000-2001 when I found 198 nests. To examine nest-site selection, I compared habitat features between successful nests, failed nests, and random sites. Discriminant function analysis differentiated habitat features, measured at hatch, between successful nests, failed nests, and random sites; lateral (r = 0.65) and overhead (r = 0.35) concealment were microhabitat variables most correlated with canonical discriminant functions. I also modeled daily survival rate (DSR) of nests as a function of year, linear and quadratic trends with nest age, nest initiation date, and seven microhabitat variables. Nest survival from a time constant model (i.e., Mayfield nest success estimate) was 0.35 (95% CL: 0.27, 0.43). Estimates of nest success were lower than those measured at Redberry Lake in the 1970s and 1980s. In addition to nest survival increasing throughout the laying period and stabilizing during incubation, nest survival showed positive relationships with nest concealment and distance to water, and a negative relationship with distance to edge. Considering these factors, a model-averaged estimate of nest survival was 0.24 (95% CL: 0.09, 0.42). I conclude that scoters selected nesting habitat adaptively because (1) successful sites were more concealed than failed sites, (2) nest sites (i.e., successful and failed) had higher concealment than random sites, and (3) nest sites were on islands where success is greater than mainland. I then estimated duckling and brood survival with Cormack-Jolly-Seber models, implemented in Program Mark, from observations of 94 and 664 individually marked adult hens and ducklings, respectively. I tested hypotheses about duckling survival and (1) hatch date, (2) initial brood size at hatch, (3) duckling size and body condition at hatch, (4) offspring sex, (5) maternal female size and body condition at hatch, and (6) weather conditions within one week of hatching. Most mortality occurred during the first six days of duckling age. Variation in both duckling and brood survival were best modeled with effects of hatch date and initial brood size, while effects of female condition, female size, duckling size, and duckling condition were inconsistent. Survival probability clearly decreased with advancing hatch date and increased with larger initial brood sizes. Effects of weather and offspring sex in 2001, the only year such information was collected, suggested survival was negatively related to poor weather, but sex of ducklings, beyond size-related differences (i.e., sexual-size dimorphism), was unimportant. Estimates of survival to 28 days of age (30-day period), whether for ducklings (0.016, 0.021) or broods (0.084, 0.138) in 2000 or 2001, respectively, are the lowest of published studies and first for scoter broods in North America. I suspect intense gull predation shortly after hatch had the largest influence on duckling survival. Further research is needed to ascertain if low nesting success and duckling survival as well as other life cycle components are limiting scoter populations locally and throughout the rest of their breeding range.en_US
dc.language.isoen_USen_US
dc.subjectnest survivalen_US
dc.subjectduckling survivalen_US
dc.subjectcormack-jolly-seber modelsen_US
dc.subjectProgram MARKen_US
dc.subjectnesting successen_US
dc.titleNesting and duckling ecology of white-winged scoters (melanitta fusca deglandi) at Redberry Lake, Saskatchewanen_US
thesis.degree.departmentBiologyen_US
thesis.degree.disciplineBiologyen_US
thesis.degree.grantorUniversity of Saskatchewanen_US
thesis.degree.levelMastersen_US
thesis.degree.nameMaster of Science (M.Sc.)en_US
dc.type.materialtexten_US
dc.type.genreThesisen_US
dc.contributor.committeeMemberHill, Michaelen_US
dc.contributor.committeeMemberClark, Robert G.en_US
dc.contributor.committeeMemberChivers, Douglas P.en_US
dc.contributor.committeeMemberMessier, Françoisen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record