University of SaskatchewanHARVEST
  • Login
  • Submit Your Work
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      Microarray analysis using pattern discovery

      Thumbnail
      View/Open
      Thesis.3o.pdf (1.113Mb)
      Date
      2004-11-05
      Author
      Bainbridge, Matthew Neil
      Type
      Thesis
      Degree Level
      Masters
      Metadata
      Show full item record
      Abstract
      Analysis of gene expression microarray data has traditionally been conducted using hierarchical clustering. However, such analysis has many known disadvantages and pattern discovery (PD) has been proposed as an alternative technique. In this work, three similar but different PD algorithms – Teiresias, Splash and Genes@Work – were benchmarked for time and memory efficiency on a small yeast cell-cycle data set. Teiresias was found to be the fastest, and best over-all program. However, Splash was more memory efficient. This work also investigated the performance of four methods of discretizing microarray data: sign-of-the-derivative, K-means, pre-set value, and Genes@Work stratification. The first three methods were evaluated on their predisposition to group together biologically related genes. On a yeast cell-cycle data set, sign-of-the-derivative method yielded the most biologically significant patterns, followed by the pre-set value and K-means methods. K-means, preset-value, and Genes@Work were also compared on their ability to classify tissue samples from diffuse large b-cell lymphoma (DLBCL) into two subtypes determined by standard techniques. The Genes@Work stratification method produced the best patterns for discriminating between the two subtypes of lymphoma. However, the results from the second-best method, K-means, call into question the accuracy of the classification by the standard technique. Finally, a number of recommendations for improvement of pattern discovery algorithms and discretization techniques are made.
      Degree
      Master of Science (M.Sc.)
      Department
      Computer Science
      Program
      Computer Science
      Supervisor
      Kusalik, Anthony J. (Tony)
      Committee
      Neufeld, Eric; DeCoteau, John; Daley, Mark; Soteros, Chris
      Copyright Date
      November 2004
      URI
      http://hdl.handle.net/10388/etd-12102004-091353
      Subject
      data mining
      patterns
      pattern discovery
      microarray
      bioinformatics
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      The University of Saskatchewan's main campus is situated on Treaty 6 Territory and the Homeland of the Métis.

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy