University of SaskatchewanHARVEST
  • Login
  • Submit Your Work
  • About
    • About HARVEST
    • Guidelines
    • Browse
      • All of HARVEST
      • Communities & Collections
      • By Issue Date
      • Authors
      • Titles
      • Subjects
      • This Collection
      • By Issue Date
      • Authors
      • Titles
      • Subjects
    • My Account
      • Login
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      View Item 
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item
      • HARVEST
      • Electronic Theses and Dissertations
      • Graduate Theses and Dissertations
      • View Item

      Modulation of Immune Responses Induced by Vaccination Against Bovine Respiratory Syncytial Virus

      Thumbnail
      View/Open
      JohnMapletoftPhD.pdf (980.9Kb)
      Date
      2008
      Author
      Mapletoft, John William
      Type
      Thesis
      Degree Level
      Doctoral
      Metadata
      Show full item record
      Abstract
      As respiratory syncytial virus (RSV) is a respiratory pathogen that causes significant morbidity and mortality in infants, there has always been great interest in the development of a vaccine. In the 1960s, children were immunized with formalin-inactivated (FI)-RSV vaccines. Not only did these vaccines fail to prevent infection, but in most cases they resulted in enhanced disease upon subsequent exposure to the virus. In the intervening years, studies in mice have led to the hypothesis that the enhanced disease is due to an aberrant Th2-biased immune response. Thus, we hypothesized that formulating FI-RSV vaccines with a Th1 promoting adjuvant, such as CpG oligoeoxynucleotides (ODN), would result in the induction of protective immunity against RSV without risk of deleterious effects. We observed in calves that parenterally delivered FI-bovine RSV (BRSV) formulated with CpG ODN resulted in a shift towards a Th1-biased or more balanced immune response that was protective against BRSV. As RSV infects the lung mucosa, vaccines that induce mucosal immunity are desirable. Parenterally delivered vaccines typically induce systemic immunity with low mucosal immune response levels, whereas mucosally delivered vaccines induce systemic and mucosal immunity. However, upon mucosal delivery there is an increased chance of vaccine components being degraded or washed away prior to the induction of immunity. Thus, we added polyphosphazenes (PP) to our mucosal vaccine formulations. PP are synthetic polymers that form non-covalent complexes with other vaccine components, increasing their stability. Intranasally delivered FI-BRSV co-formulated with CpG ODN and PP performed better than FI-BRSV alone, or FI-BRSV formulated with either adjuvant individually, in terms of inducing protective immunity against BRSV in mice. Furthermore, mice that received intranasally-delivered FI-BRSV or BRSV F protein co-formulated with CpG ODN and PP developed higher levels of immunity and protection than mice that received parenterally delivered vaccines. Because of the similarities between BRSV and HRSV, co-formulation of intranasally delivered HRSV vaccines with CpG ODN and PP could prove important in the development of a safe vaccine against HRSV in humans.
      Degree
      Doctor of Philosophy (Ph.D.)
      Department
      Veterinary Microbiology
      Program
      Veterinary Microbiology
      Supervisor
      van den Hurk, Sylvia; Babiuk, Lorne A
      Committee
      Schultz, Ron D; Misra, Vikram; Griebel, Philip J; Townsend, Hugh G; Warrington, Rob C
      Copyright Date
      2008
      URI
      http://hdl.handle.net/10388/etd-12222008-111241
      Subject
      Mucosal Immunization
      Immunology
      Virology
      Polyphosphazenes
      BRSV
      Vaccine
      CpG Oligodeoxynucleotides
      Adjuvant
      Collections
      • Graduate Theses and Dissertations
      University of Saskatchewan

      University Library

      The University of Saskatchewan's main campus is situated on Treaty 6 Territory and the Homeland of the Métis.

      © University of Saskatchewan
      Contact Us | Disclaimer | Privacy