FUNCTIONAL ADAPTATION OF THE RUMINAL EPITHELIUM
Date
2014-01-20
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
ORCID
Type
Degree Level
Masters
Abstract
Short chain fatty acids (SCFA) synthesized in the rumen from carbohydrate fermentation are an essential energy source for ruminants. Current literature supports that SCFA are absorbed across the rumen epithelium via passive diffusion or protein-mediated transport, however, the rate and degree to which these pathways adapt to a change in diet fermentability is unknown. Furthermore, Na+ flux is partially determined by SCFA absorption, and thus is a key indicator of functional changes in the rumen epithelium. The objectives of this study were to determine the time required for a change in SCFA and Na+ absorption across the bovine rumen epithelium and to evaluate the rate and degree to which absorption pathways adapt to an increase in diet fermentability relative to changes in surface area. Twenty-five weaned Holstein steer calves were blocked by body weight and randomly assigned to either the control diet (CON; 91.5% hay and 8.5% vitamin/mineral supplement) or a moderately fermentable diet (50% hay; 41.5% barley grain, and 8.5% vitamin/mineral supplement) fed for 3 (G3), 7 (G7), 14 (G14), or 21 d (G21). All calves were fed at 2.25% BW at 0800 h. Reticular pH was recorded every 5 min for 48 h prior to killing (1000 h). Ruminal tissue was collected for Ussing chamber, barrier function, surface area measurements, and gene expression. Net 22Na+ flux (JNET-Na; 80 kBq/15 mL), the rate and pathway of mucosal to serosal 3H-acetate (JMS-acetate; 37 kBq/15 mL) and 14C-butyrate (JMS-butyrate; 74 kBq/15 mL) flux, and serosal to mucosal flux of 3H-mannitol (JSM-mannitol; 74 KBq/15 mL) and tissue conductance were measured. Half of the chambers assigned to measure JMS-acetate and JMS-butyrate were further assigned to 1 of 2 acetate and butyrate concentration treatments: 10 mM (Low) and 50 mM (High). Furthermore, JSM-mannitol flux was also measured during an acidotic and hyperosmotic challenge (CHAL) and recovery (REC) to measure barrier function of ruminal tissue. Mean reticular pH, which was positively correlated with ruminal pH (R2 = 0.5477), decreased from 6.90 for CON to 6.59 for G7 then increased. Net Na+ flux increased 125% within 7 d. Total JMS-acetate and JMS-butyrate increased from CON to G21, where passive diffusion was the primary SCFA absorption pathway. Total JMS-acetate and JMS-butyrate were greater when incubated in High vs. Low. Effective surface area of the ruminal epithelium was not affected by dietary treatment. Increased JSM-mannitol, tissue conductance, and increased expression of IL-1β and TLR2 (tendencies) with increased days fed the moderate grain diet indicated reduced rumen epithelium barrier function. Furthermore, the CHAL treatment reduced barrier function, which was not reversible during REC. This study indicates that a moderate increase in diet fermentability increases rumen epithelium absorptive function in the absence of increased SA, but reduces barrier function. Data from this study also suggests that absorption and barrier function follow different timelines, posing a challenge for ruminant diet adaptation to moderately to highly fermentable diets.
Description
Keywords
rumen epithelium, dietary adaptation, short chain fatty acid, ion transport, Ussing chamber
Citation
Degree
Master of Science (M.Sc.)
Department
Animal and Poultry Science
Program
Animal Science