Repository logo

New data structure and process model for automated watershed delineation



Journal Title

Journal ISSN

Volume Title




Degree Level



DEM analysis to delineate the stream network and its associated subwatersheds are the primary steps in the raster-based parameterization of watersheds. There are two widely used methods for delineating subwatersheds. One of these is the Upstream Catchment Area (UCA) method. The UCA method employs a user specified threshold value of upstream catchment area to delineate subwatersheds from the extracted network of streams. The other common technique is the nodal method. In this approach, subwatersheds are initiated at stream network nodes, where nodes occur at the upstream starting point of streams and at the point of intersection of streams in the network. The UCA approach and the Nodal approach do not permit watershed initiation at points of specific interests. They also fail to explicitly recognize drainage features other than single channel reaches. That is, they exclude water bodies, wetlands, braided channels and other important hydrologic features. TOPAZ (TOpographic PArameteriZation) [Garbrecht and Martz, 1992], is a typical program for raster based, automated drainage analysis. It initiates subwatersheds at source points and at points of intersection of drainage channels. TOPAZ treats lakes as spurious depressions arising out of errors in DEM, and removes them. This research addresses one important limitation of the currently used modeling techniques and tools. It adds the capability to initiate watershed delineation at points of specific interest other than junction and source points in the delineated networks from the Digital Elevation Models (DEMs). The research project evaluates qualitative and quantitative aspects of a new Object Oriented data structure and process model for raster format data analysis in spatial hydrology. The concept of incorporating a user-specified analysis in extraction and parameterization of watersheds is based on the need to have a tool to allow for studies specific to certain points in the stream network including gauging stations. It is also based on the need for an improved delineation of hydrologic features (water bodies) in hydrologic modeling. The research project developed an interface module for TOPAZ [Garbrecht and Martz, 1992] to offset the aforementioned disadvantages of the subwatershed delineation techniques. The research developed an internal hybrid, raster-based, Object Oriented data structure and processing model similar to that of vector data type. The new internal data structure permits further augmentation of the software tool. This internal data structure and algorithms provide an improved framework for discretization of the important hydrologic entities (water bodies) and the capability of extracting homogenous hydrological subwatersheds.



merging subwatersheds, sub divide subwatershed, Watershed, Delineation, Hydrology, watershed segmentation, Naveen Mudgal, Environmental hydrology



Master of Science (M.Sc.)


Environmental Engineering


Environmental Engineering


Part Of