Repository logo
 

State estimation, system identification and adaptive control for networked systems

Date

2009

Journal Title

Journal ISSN

Volume Title

Publisher

ORCID

Type

Degree Level

Masters

Abstract

A networked control system (NCS) is a feedback control system that has its control loop physically connected via real-time communication networks. To meet the demands of `teleautomation', modularity, integrated diagnostics, quick maintenance and decentralization of control, NCSs have received remarkable attention worldwide during the past decade. Yet despite their distinct advantages, NCSs are suffering from network-induced constraints such as time delays and packet dropouts, which may degrade system performance. Therefore, the network-induced constraints should be incorporated into the control design and related studies. For the problem of state estimation in a network environment, we present the strategy of simultaneous input and state estimation to compensate for the effects of unknown input missing. A sub-optimal algorithm is proposed, and the stability properties are proven by analyzing the solution of a Riccati-like equation. Despite its importance, system identification in a network environment has been studied poorly before. To identify the parameters of a system in a network environment, we modify the classical Kalman filter to obtain an algorithm that is capable of handling missing output data caused by the network medium. Convergence properties of the algorithm are established under the stochastic framework. We further develop an adaptive control scheme for networked systems. By employing the proposed output estimator and parameter estimator, the designed adaptive control can track the expected signal. Rigorous convergence analysis of the scheme is performed under the stochastic framework as well.

Description

Keywords

filtering, parameter estimation, networked systems, control design

Citation

Degree

Master of Science (M.Sc.)

Department

Mechanical Engineering

Program

Mechanical Engineering

Citation

Part Of

item.page.relation.ispartofseries

DOI

item.page.identifier.pmid

item.page.identifier.pmcid