Repository logo
 

An Efficient Adversarial Self-Supervised Representation Learning Model for Classification of Anomalies in Wireless Capsule Endoscopy Images

dc.contributor.committeeMemberBui, Francis
dc.contributor.committeeMemberWahid, Khan
dc.contributor.committeeMemberLiang, Xiaodong
dc.contributor.committeeMemberJin, Lingling
dc.creatorJamali, Ali
dc.creator.orcid0009-0005-8051-665X
dc.date.accessioned2023-09-08T18:26:55Z
dc.date.copyright2023
dc.date.created2023-08
dc.date.issued2023-09-08
dc.date.submittedAugust 2023
dc.date.updated2023-09-08T18:26:56Z
dc.description.abstract
This item is under an embargo. Access to the abstract will not be permitted until 2024-09-08
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/10388/14961
dc.language.isoen
dc.subjectArtificial Intelligence, Self-Supervised Learning, Wireless Capsule Endoscopy, Generative Adversarial Network
dc.titleAn Efficient Adversarial Self-Supervised Representation Learning Model for Classification of Anomalies in Wireless Capsule Endoscopy Images
dc.typeThesis
dc.type.materialtext
local.embargo.lift2024-09-08
local.embargo.terms2024-09-08
thesis.degree.departmentElectrical and Computer Engineering
thesis.degree.disciplineElectrical Engineering
thesis.degree.grantorUniversity of Saskatchewan
thesis.degree.levelMasters
thesis.degree.nameMaster of Science (M.Sc.)

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
JAMALI-THESIS-2023.pdf
Size:
5.37 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
LICENSE.txt
Size:
2.26 KB
Format:
Plain Text
Description: