Repository logo
 

Synthesis and Characterization of Group-13-Bridged [1]- and [1.1]Metallacyclophanes

dc.contributor.advisorMüller, J,en_US
dc.contributor.committeeMemberUrquhart, S. G.en_US
dc.contributor.committeeMemberMajewski, M.en_US
dc.contributor.committeeMemberMoewes, A.en_US
dc.contributor.committeeMemberMacdonald, C.en_US
dc.contributor.committeeMemberFoley, S. R.en_US
dc.creatorLund, Clinton Laineen_US
dc.date.accessioned2008-11-09T10:30:05Zen_US
dc.date.accessioned2013-01-04T05:08:02Z
dc.date.available2009-11-26T08:00:00Zen_US
dc.date.available2013-01-04T05:08:02Z
dc.date.created2008en_US
dc.date.issued2008en_US
dc.date.submitted2008en_US
dc.description.abstractThe synthesis and characterization of the first aluminum- and gallium-bridged [1]chromarenophanes, [1]vanadarenophanes and [1]molybdarenophanes are described; these compounds belong to a class of compounds referred to as [1]metallacyclophanes. [1]Metallacyclophanes are strained, ring-tilted complexes that have a propensity to undergo ring-opening polymerizations (ROPs). On the basis of using bulky, intramolecularly coordinating ligands, the [1]metallacyclophanes described within have been synthesized and characterized. By exploring known transition-metal catalyzed ROP methodologies, a serendipitous discovery has been made. The gallium-bridged [1]molybdarenophane undergoes ring-opening reactions catalyzed by sigma donors such as thf and triethylphospine or by pi donors such as 1,5-cyclooctadiene. Known transition-metal catalyzed ROP methodologies proved to be unsuccessful with the aluminum- and gallium-bridged [1]metallarenophanes, possibly due to steric overprotection. The synthesis and characterization of the first [1.1]metallarenophanes is described. By utilizing ligands with dimethylamine-donor functionalities, aluminum- and gallium-bridged unstrained [1.1]chromarenophanes and [1.1]molybdarenophanes have been isolated. Gallium-bridged [1.1]metallarenophanes have been determined to be Class II compounds through investigations by cyclic voltammetry. Aluminum-bridged [1.1]metallarenophanes can not be successfully characterized by electrochemical measurements because of their acute sensitivity towards oxygen and moisture. All isolated [1.1]metallarenophanes adopt anti conformations in the solid state. Several new reactive aluminum, gallium and indium and compounds have been prepared that incorporate bulky donor ligands. All new compounds have been characterized by NMR spectroscopy, X-ray crystallography, mass spectrometry and elemental analysis. When comparing solid-state structures of [1]metallarenophanes, some generalizations can be made. For a given [1]metallarenophane gallium-bridged compounds are always more tilted when compared to their respective aluminum-bridged compound for reasons that still remain unknown. If the bridging element is kept constant, the tilt angles are found to increase in the order of Mo > V > Cr for the [1]metallarenophanes, which can be attributed directly to their respective metallic radii.en_US
dc.identifier.urihttp://hdl.handle.net/10388/etd-11092008-103005en_US
dc.language.isoen_USen_US
dc.subject[1.1]Ferrocenophanesen_US
dc.subject[1.1]Chromarenophanesen_US
dc.subject[1]Vanadarenophanesen_US
dc.subject[1]Chromarenophanesen_US
dc.subject[1]Molybdarenophanesen_US
dc.subject[1.1]Molybdarenophanesen_US
dc.titleSynthesis and Characterization of Group-13-Bridged [1]- and [1.1]Metallacyclophanesen_US
dc.type.genreThesisen_US
dc.type.materialtexten_US
thesis.degree.departmentChemistryen_US
thesis.degree.disciplineChemistryen_US
thesis.degree.grantorUniversity of Saskatchewanen_US
thesis.degree.levelDoctoralen_US
thesis.degree.nameDoctor of Philosophy (Ph.D.)en_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
CLINTON_LUND_THESIS_ETD_Submission2.pdf
Size:
2.47 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
905 B
Format:
Plain Text
Description: