Repository logo
 

Excess Noise in Amorphous Selenium Used in X-ray Detectors

Date

2009

Journal Title

Journal ISSN

Volume Title

Publisher

ORCID

Type

Degree Level

Doctoral

Abstract

Amorphous selenium based digital radiography has attracted much attention because of selenium's high X-ray absorption and excellent charge transport properties, and the ability to be created thick (typically 100 to 1000 micron) uniform layers over a large area (typically 30 cm X 30 cm) at low processing temperatures (typically at around 50 degree C substrate temperature). In this work, the excess noise in amorphous selenium has been studied. A number of device parameters were altered to study the noise characteristics, such as the metal of the electrodes, bulk material composition, device volume, surface conditions and substrate temperature. All the samples had a transverse geometry with 20 to 200- micron thick layers of amorphous selenium electroded with metal at the top and at the bottom. Sample devices were fabricated by conventional vacuum deposition. Noise power was measured over a limited bandwidth of 1 kHz. The fluctuations for one sample amounted to 1% of the bias current. The excess noise was mainly 1/f noise with the slope ranging from -0.77 to -1.4. Interpretation of the noise spectra was complicated due to the samples' highly non-linear I-V relation and long time transients. The metals of the electrode clearly showed a large effect on both the magnitude and shape of the noise spectrum. Of the metals studied, aluminum produced the least normalized noise and platinum the most. The addition of arsenic caused a decrease in the normalized noise. An additional 0.2% (% wt.) arsenic decreased the 1/f noise magnitude by more than a decade, but did not change the slope. The addition of chlorine did not affect the noise magnitude. Amorphous selenium is quite vulnerable to stress and in particular, external mechanical stress causes crystallization. The surface of the sample was gently abraded, applying the least possible amount of stress to the selenium layer. A change in the surface condition before the top electrode was deposited showed that a roughened surface decreased the noise magnitude substantially. These results strongly indicate that the noise is controlled by the metal-semiconductor interface. Noise characteristics in multilayered samples were examined. The p-i-n and n-i-p structures consisted of 200 micron i-layer with 2 to 6 micron p- and n-like layers. The noise fluctuation in the current are typical of 1/f noise showing a power-law spectrum with slopes between -0.9 to -1.1. These samples showed a substantial decrease in the noise power compared to single layer samples; the additional n-like and p-like layers acted as carrier sources so that the current was not controlled by the metal interface. Hence, the measurements are closer to the intrinsic noise of a-Se. After exposure to 14 R (Roentgen) of X-rays, the normalized noise decreased by a factor of 1.6 for the n-i-p structure.

Description

Keywords

Non-Crystalline Materials, Photodetectors, Digital Radiography, Noise in semiconductors, Electronic Materials and Devices, Amorphous Selenium

Citation

Degree

Doctor of Philosophy (Ph.D.)

Department

Electrical Engineering

Program

Electrical Engineering

Citation

Part Of

item.page.relation.ispartofseries

DOI

item.page.identifier.pmid

item.page.identifier.pmcid