Repository logo
 

An extension of the Deutsch-Jozsa algorithm to arbitrary qudits

dc.contributor.advisorRangacharyulu, Chilakamarri (Chary)en_US
dc.contributor.committeeMemberPlyukhin, Alexander V.en_US
dc.contributor.committeeMemberKoustov, Alexandre V. (Sasha)en_US
dc.contributor.committeeMemberDutchyn, Christopheren_US
dc.contributor.committeeMemberDick, Raineren_US
dc.contributor.committeeMemberBradley, Michael P.en_US
dc.creatorMarttala, Peteren_US
dc.date.accessioned2007-07-26T10:50:41Zen_US
dc.date.accessioned2013-01-04T04:47:46Z
dc.date.available2008-08-01T08:00:00Zen_US
dc.date.available2013-01-04T04:47:46Z
dc.date.created2007en_US
dc.date.issued2007en_US
dc.date.submitted2007en_US
dc.description.abstractRecent advances in quantum computational science promise substantial improvements in the speed with which certain classes of problems can be computed. Various algorithms that utilize the distinctively non-classical characteristics of quantum mechanics have been formulated to take advantage of this promising new approach to computation. One such algorithm was formulated by David Deutsch and Richard Jozsa. By measuring the output of a quantum network that implements this algorithm, it is possible to determine with N – 1 measurements certain global properties of a function f(x), where N is the number of network inputs. Classically, it may not be possible to determine these same properties without evaluating f(x) a number of times that rises exponentially as N increases. Hitherto, the potential power of this algorithm has been explored in the context of qubits, the quantum computational analogue of classical bits. However, just as one can conceive of classical computation in the context of non-binary logic, such as ternary or quaternary logic, so also can one conceive of corresponding higher-order quantum computational equivalents.This thesis investigates the behaviour of the Deutsch-Jozsa algorithm in the context of these higher-order quantum computational forms of logic and explores potential applications for this algorithm. An important conclusion reached is that, not only can the Deutsch-Jozsa algorithm’s known computational advantages be formulated in more general terms, but also a new algorithmic property is revealed with potential practical applications.en_US
dc.identifier.urihttp://hdl.handle.net/10388/etd-07262007-105041en_US
dc.language.isoen_USen_US
dc.subjectquantum logicen_US
dc.subjectDeutsch-Jozsaen_US
dc.subjectquditsen_US
dc.subjectquantum algorithmsen_US
dc.subjectquantum computationen_US
dc.subjectquantum computingen_US
dc.titleAn extension of the Deutsch-Jozsa algorithm to arbitrary quditsen_US
dc.type.genreThesisen_US
dc.type.materialtexten_US
thesis.degree.departmentPhysics and Engineering Physicsen_US
thesis.degree.disciplinePhysics and Engineering Physicsen_US
thesis.degree.grantorUniversity of Saskatchewanen_US
thesis.degree.levelMastersen_US
thesis.degree.nameMaster of Science (M.Sc.)en_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Thesis.pdf
Size:
453.23 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
905 B
Format:
Plain Text
Description: