Repository logo
 

An experimental investigation of the flow around impulsively started cylinders

dc.contributor.advisorSumner, Daviden_US
dc.creatorTonui, Nelson Kiplanga'ten_US
dc.date.accessioned2009-08-25T12:42:43Zen_US
dc.date.accessioned2013-01-04T04:54:42Z
dc.date.available2010-09-10T08:00:00Zen_US
dc.date.available2013-01-04T04:54:42Z
dc.date.created2009-08en_US
dc.date.issued2009-08en_US
dc.date.submittedAugust 2009en_US
dc.description.abstractA study of impulsively started flow over cylindrical objects is made using the particle image velocimetry (PIV) technique for Reynolds numbers of Re = 200, 500 and 1000 in an X-Y towing tank. The cylindrical objects studied were a circular cylinder of diameter, D = 25.4 mm, and square and diamond cylinders each with side length, D = 25.4 mm. The aspect ratio, AR (= L/D) of the cylinders was 28 and therefore they were considered infinite. The development of the recirculation zone up to a dimensionless time of t* = 4 following the start of the motion was examined. The impulsive start was approximated using a dimensionless acceleration parameter, a*, and in this research, the experiments were conducted for five acceleration parameters, a* = 0.5, 1, 3, 5 and 10. The study showed that conditions similar to impulsively started motion were attained once a*≥3. A recirculation zone was formed immediately after the start of motion as a result of flow separation at the surface of the cylinder. It contained a pair of primary eddies, which in the initial stages (like in this case) were symmetrical and rotating in opposite directions. The recirculation zone was quantified by looking at the length of the zone, LR, the vortex development, both in terms of the streamwise location and the cross-stream spacing of the vortex centers, a and b, respectively, as well as the circulation (strength) of the primary vortices, Γ. For all types of cylinders examined, the length of the recirculation zone, the streamwise location of the primary eddies and the circulation of the primary eddies increase as time advances from the start of the impulsive motion. They also increase with an increase in the acceleration parameter, a*, until a* = 3, beyond which there is no more change, since the conditions similar to impulsively started conditions have been achieved. The cross-stream spacing of the primary vortices is relatively independent of Re, a* and t* but was different for different cylinders. Irrespective of the type of cylinder, the growth of the recirculation zone at Re = 500 and 1000 is smaller than at Re = 200. The recirculation zone of a diamond cylinder is much larger than for both square and circular cylinders. The square and diamond cylinders have sharp edges which act as fixed separation points. Therefore, the cross-stream spacing of the primary vortex centers are independent of Re, unlike the circular cylinder which shows some slight variation with changes in Reynolds number. The growth of the recirculation is more dependent on the distance moved following the start of the impulsive motion; that is why for all types of cylinders, the LR/D, a/D and Γ/UD profiles collapse onto common curves when plotted against the distance moved from the start of the motion.en_US
dc.identifier.urihttp://hdl.handle.net/10388/etd-08252009-124243en_US
dc.language.isoen_USen_US
dc.subjectRecirculation Zone Featuresen_US
dc.subjectInfinite Cylindersen_US
dc.subjectAcceleration Parameteren_US
dc.subjectImpulsively Started Flowen_US
dc.titleAn experimental investigation of the flow around impulsively started cylindersen_US
dc.type.genreThesisen_US
dc.type.materialtexten_US
thesis.degree.departmentMechanical Engineeringen_US
thesis.degree.disciplineMechanical Engineeringen_US
thesis.degree.grantorUniversity of Saskatchewanen_US
thesis.degree.levelMastersen_US
thesis.degree.nameMaster of Science (M.Sc.)en_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TonuiTHESIS.pdf
Size:
8.41 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
905 B
Format:
Plain Text
Description: