Repository logo

Experimental study of a two-DOF five bar closed-loop mechanism

dc.contributor.advisorZhang, W. J. (Chris)en_US
dc.contributor.advisorChen, X. B. (Daniel)en_US
dc.contributor.committeeMemberSumner, Daviden_US
dc.contributor.committeeMemberGupta, Madan M.en_US
dc.contributor.committeeMemberGokaraju, Ramakrishnaen_US
dc.contributor.committeeMemberFotouhi, Rezaen_US
dc.creatorMoazed, Rezaen_US 2006en_US
dc.description.abstractThis research is to carry out an experimental study to examine and verify the effectiveness of the control algorithms and strategies developed at the Advanced Engineering Design Laboratory (AEDL). For this purpose, two objectives are set to be achieved in this research. The first objective is to develop a generic experiment environment (test bed) such that different control approaches and algorithms can be implemented on it. The second objective is to conduct an experimental study on the examined control algorithms, as applied to the above test bed. To achieve the first objective, two main test beds, namely, the real-time controllable (RTC) mechanism and the hybrid machine, have been developed based on a two degree of freedom (DOF) closed-loop five-bar linkage. The 2-DOF closed-loop mechanism is employed in this study as it is the simplest of multi-DOF closed-loop mechanisms, and control approaches and conclusions based on a 2-DOF mechanism are generic and can be applied to a closed-loop mechanism with a higher number of degrees of freedom. The RTC mechanism test bed is driven by two servomotors and the hybrid machine is driven by one servomotor and a traditional CV motor. To achieve the second objective, an experimental study on different control algorithms has been conducted. The Proportional Derivative (PD) based control laws, i.e., traditional iii PD control, Nonlinear-PD (NPD) control, Evolutionary PD (EPD) control, non-linear PD learning control (NPD-LC) and Adaptive Evolutionary Switching-PD (AES-PD) are applied to the RTC mechanism; and as applied to the Hybrid Actuation System (HAS), the traditional PD control and the SMC control techniques are examined and compared. In the case of the RTC mechanism, the experiments on the five PD-based control algorithms, i.e., PD control, NPD control, EPD, NPD-LC, and AES-PD, show that the NPD controller has better performance than the PD controller in terms of the reduction in position tracking errors. It is also illustrated by the experiments that iteration learning control (ILC) techniques can be used to improve the trajectory tracking performance. However, AES-PD showed to have a faster convergence rate than the other ILC control laws. Experimental results also show that feedback ILC is more effective than the feedforward ILC and has a faster convergence rate. In addition, the results of the comparative study of the traditional PD and the Computed Torque Control (CTC) technique at both low and high speeds show that at lower speeds, both of these controllers provide similar results. However, with an increase in speed, the position tracking errors using the CTC control approach become larger than that of the traditional PD control. In the case of the hybrid machine, PD control and SMC control are applied to the mechanism. The results show that for the control of the hybrid machine and the range of speed used in this experimental study, PD control can result in satisfactory performance. However, SMC proved to be more effective than PD control.en_US
dc.subjectFive Baren_US
dc.subjectClosed-Loop Mechanismen_US
dc.subjectReal Time Controllable Mechanismen_US
dc.subjectHybrid Actuation Systemen_US
dc.titleExperimental study of a two-DOF five bar closed-loop mechanismen_US
dc.type.materialtexten_US Engineeringen_US Engineeringen_US of Saskatchewanen_US of Science (M.Sc.)en_US


Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
1.28 MB
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
905 B
Plain Text