Repository logo
 

The effect of energy recovery on indoor climate, air quality and energy consumption using computer simulations

Date

2006-06-14

Journal Title

Journal ISSN

Volume Title

Publisher

ORCID

Type

Degree Level

Masters

Abstract

The main objectives of this thesis are to determine if the addition of an energy wheel in an HVAC system can improve the indoor air relative humidity (RH), and perceived air quality (PAQ), as well as reduce energy consumption. An energy wheel is an air-to-air energy exchanger that transfers heat and moisture between the outdoor air entering and the exhaust air leaving a building. This thesis uses the TRNSYS computer package to model two buildings (an office and a school) in four different cities (Saskatoon, Saskatchewan; Vancouver, British Columbia; Tampa, Florida and Phoenix, Arizona).The results with and without an energy wheel are compared to see if the energy wheel has a significant impact on the RH and PAQ in the buildings. The energy wheel reduces peak RH levels in Tampa, (up to 15% RH), which is a humid climate, but has a smaller effect on the indoor RH in Saskatoon (up to 4% RH) and Phoenix (up to 11% RH), which are dry climates. The energy wheel also reduces the number of people that are dissatisfied with the PAQ within the space by up to 17% in Tampa. The addition of the energy wheel to the HVAC system creates a reduction in the total energy consumed by the HVAC system in Saskatoon, Phoenix and Tampa (2% in each city). There is a significant reduction in the size of the heating equipment in Saskatoon (26%) and in the size of the cooling equipment in Phoenix (18%) and Tampa (17%). A cost analysis shows that the HVAC system including an energy wheel has the least life-cycle costs in these three cities, with savings of up to 6%. In Vancouver, the energy wheel has a negligible impact on the indoor RH, PAQ and energy consumption.

Description

Keywords

moderating humidity levels, energy savings, cost savings, TRNSYS, thermal comfort, HVAC, perceived air quality (PAQ)

Citation

Degree

Master of Science (M.Sc.)

Department

Mechanical Engineering

Program

Mechanical Engineering

Citation

Part Of

item.page.relation.ispartofseries

DOI

item.page.identifier.pmid

item.page.identifier.pmcid