Repository logo

Feasibility of a tip grafting system for fruit breeding and its effects on cold hardiness and juvenility



Journal Title

Journal ISSN

Volume Title




Degree Level



The cost of new cultivar development is high due to long juvenile periods and large tree size in tree fruit breeding programs. For apples, sour cherries, and saskatoon berries, grafting seedling scions onto the tips of branches of mature plants was hypothesized to shorten the juvenile period and reduce land use under the Canadian prairie conditions. For apples, a tip grafting system (tip grafting onto mature crabapple rootstocks) was compared with the traditional grafting system (grafting onto young ‘Ottawa 3’ rootstocks). Apple scions of ‘Golden Delicious’, ‘McIntosh’, and ‘SK Prairie Sun’ which exhibit a range of inherent cold hardiness, were grafted in the spring of 2001. Over a two year period, winter survival of the scions was improved by 37% by the tip grafting system as compared to the traditional grafting system making it not feasible for evaluation of cold hardiness of scions. Vegetative growth of scions approximated the rootstocks on which the scions were grafted. Winter survival was highly correlated with shoot growth cessation (r = +0.83) and terminal bud stage (r = +0.85) observed around the time of first frost. Juvenile seedlings of saskatoon berry and sour cherry hybrids were tip grafted onto mature plants of their own species in the spring of 2000. After two growing seasons, the tip grafting system in sour cherries had reduced flowering by 69.7%, shoot length by 84%, and shoot diameter by 76% compared with the juvenile seedlings on their own roots (scion donors). Tip grafting saskatoon berry seedlings increased flowering by 68%, shoot length by 257%, and shoot diameter by 42% compared with scion donors. For sour cherries, the tip grafting system reduced winter dieback by 99.6%, hastened terminal bud development and leaf drop compared with the scion donors. Tip grafting of saskatoon berry seedlings had little effect on terminal bud development and cold hardiness of scions perhaps due to the cold hardy character of this species. For apples and sour cherries, the tip grafting system tested in this study enhanced cold hardiness of scions when combined with the appropriated rootstocks and may be useful for maintaining germplasm that otherwise would not be hardy in northern locations.



Graft transmission, Cold acclimation, Phase change



Master of Science (M.Sc.)


Plant Sciences


Plant Sciences


Part Of