Repository logo
 

Spatial variability of snowmelt water balances in a subarctic catchment, Wolf Creek, Yukon

Date

2006-12-02

Journal Title

Journal ISSN

Volume Title

Publisher

ORCID

Type

Degree Level

Masters

Abstract

The intra-basin variability of snowmelt and meltwater runoff hydrology in an 8 km2 subarctic alpine tundra catchment was examined for the 2003 melt period. The catchment, Granger Creek, is within the Wolf Creek Research Basin, Yukon which is typical of mountain subarctic landscapes in north-western Canada. The study catchment was segmented into nine internally uniform zones termed Landscape Units (LUs) based on their similar hydrological, physiographic, vegetation and soil properties. Snow accumulation exhibited significant variability among the LUs, with greatest snow water equivalent in areas of tall shrub vegetation. Melt began first on southerly exposures and at lower elevations, yet average melt rates for the study period varied little among LUs with the exception of those with strong aspects. In LUs with capping organic soils, meltwater first infiltrated this surface horizon, satisfying its storage capacity and then percolated into the frozen mineral substrate. Infiltration and percolation into frozen mineral soils was restricted where melt occurred rapidly and organic soils were thin; in this case meltwater delivery rates exceeded the frozen mineral soil infiltration rate, resulting in high runoff rates. In contrast, where there were slower meltrates and thick organic soils, infiltration was unlimited and runoff was suppressed. The snow water equivalent had a large impact on runoff generation as soil storage capacity was quickly surpassed in areas of deep snow, diverting the bulk of meltwater laterally to the drainage network. A spatially distributed water balance indicated that snowmelt freshet was primarily controlled by areas with tall shrub vegetation that accumulate large quantities of snow and by alpine areas with no capping organic soils. The intra-basin water balance variability has important implications for modeling freshet in hydrological models.

Description

Keywords

infiltration, water balances, runoff, subarctic, snowmelt hydrology

Citation

Degree

Master of Science (M.Sc.)

Department

Geography

Program

Geography

Committee

Citation

Part Of

item.page.relation.ispartofseries

DOI

item.page.identifier.pmid

item.page.identifier.pmcid