Repository logo
 

Electrochemical determination of surface active compounds at noble metal ultramicroelectrodes in flowing solutions

Date

1998-11-01

Journal Title

Journal ISSN

Volume Title

Publisher

ORCID

Type

Degree Level

Doctoral

Abstract

In this work, a new electrochemical detection method was developed with the ability to determine a wide range of inorganic and organic species at, trace levels. In brief, the detection method takes advantage of all possible electrochemical reactions that may occur during scanning of the electrode potential. Changes in the detector response are mainly the result of inhibition of oxygen adsorption and hydrogen adsorption, alteration of electrical properties of the double layer, or redox processes of the adsorbate. Various electrochemical techniques were examined in the measurements; i.e. cyclic voltammetry, pulse amperometric detection, and square wave voltammetry. In those electrochemical techniques, the detection was carried out in a stripping mode after accumulation of analytes on the electrode surface. The smallest discernable signal is associated with about 0.1% surface coverage, which corresponds to the adsorption of about 10-18 mol of analyte on a ultramicroelectrode 5-[mu]m in radius. The response time of the detector to the concentration change in most cases is less than 1s. Electrochemical conditioning of the working electrode is sufficient to ensure a stable response for a period of several hours. It appears that square wave and cyclic voltammetry techniques are more suitable for the detection method. The linear dynamic range of the calibration curve depends on the characteristic of the analyte-electrode bond and redox processes of the analyte, which may occur at the electrode surface. For instance, for strongly adsorbing molecules the linear dynamic range extends over two orders of magnitude from about 10 -7 M to 10-5 M and for electroactive compounds from about 10-8 M to 10-4 M. In general, the relative standard deviation for replicate determinations was lower than 5%. Moreover, in these analyses, removal of oxygen from the analyzed solutions is not required.

Description

Keywords

chemistry, chemical detectors, electrochemical sensors, electrochemistry

Citation

Degree

Doctor of Philosophy (Ph.D.)

Department

Chemistry

Program

Chemistry

Advisor

Citation

Part Of

item.page.relation.ispartofseries

DOI

item.page.identifier.pmid

item.page.identifier.pmcid