Repository logo
 

Law of large numbers for monotone convolution

Date

2014-09-19

Journal Title

Journal ISSN

Volume Title

Publisher

ORCID

Type

Degree Level

Masters

Abstract

In this thesis, we use martingales to show that the dilation of a sequence of monotone convolutions $D_\frac{1}{b_n} (\mu_1 \triangleright \mu_2 \triangleright \cdots \triangleright \mu_n)$ is stable, where $\mu_j$ are probability distributions with the condition $\sum \limits_{n=1}^\infty \frac{1}{b_n} \text{var}(\mu_n) < \infty$. This proves a law of large numbers for monotonically independent random variables.

Description

Keywords

Law of large numbers, monotone convolution, Non-commutative probability theory, Markov chains and martingales

Citation

Degree

Master of Science (M.Sc.)

Department

Mathematics and Statistics

Program

Mathematics

Citation

Part Of

item.page.relation.ispartofseries

DOI

item.page.identifier.pmid

item.page.identifier.pmcid