Repository logo
 

Physico-chemical properties of chickpea flour, starch and protein fractions and their utilization in low-fat pork bologna

Date

2008

Journal Title

Journal ISSN

Volume Title

Publisher

ORCID

Type

Degree Level

Masters

Abstract

The main objective of this research was to investigate possible uses of Western-Canadian grown chickpea (Cicer arietinum L.) in the form of flour, starch and protein isolates in low-fat pork bologna. In the first study, flour, starch and protein isolates from six chickpea cultivars (three Kabuli and three Desi) from two harvests (2005 and 2006) were evaluated for their physico-chemical, functional and thermal properties. Chickpea flour was made by grinding seed to pass through a 0.1mm screen, whereas protein isolates and starch were prepared by a wet milling process. Protein isolates were prepared from chickpea flour (23.2% protein on average) by alkaline extraction (pH 8.0) and isoelectric precipitation (pH 4.3). Protein isolates contained 72.8-85.3% protein; the starch fraction contained 93.0-98.0% starch. On SDS-PAGE, the chickpea flours and protein isolates contained similar polypeptide bands in the range of 30 to 55 kDa, with three major bands at approximately 50-55, 40 and 30 kDa. Least gelation concentration (LGC) for chickpea flours ranged from 6-14%; LGC for chickpea protein isolates ranged from 10-14%. Differential scanning calorimetry (DSC) of chickpea flour slurries revealed two endothermic peaks. One corresponded to starch gelatinization at approximately 64°C, which was slightly higher than for the starch fraction (~60°C). The second broad peak at approximately 96°C corresponded to the denaturation of the globulin protein fraction, which was also slightly higher than for the protein isolates (~91°C). Chickpea flour exhibited nitrogen solubility index values higher than those of chickpea protein isolates and soy and pea protein isolates. Chickpea protein isolates exhibited water holding capacities, oil absorption capacities, emulsion activity indeces and emulsion stability indeces higher than those of the chickpea flours. CDC Xena (Kabuli) and Myles (Desi), in general, most exhibited properties appropriate for meat applications. In the second study, the efficacy of flour, starch and protein from CDC Xena (Kabuli hereafter) and Myles (Desi hereafter) were investigated in low-fat pork bologna (LFPB). Low-fat pork bologna (

Description

Keywords

Legume, Sensory, Low-fat bologna, Binder, Chickpea

Citation

Degree

Master of Science (M.Sc.)

Department

Applied Microbiology and Food Science

Program

Applied Microbiology and Food Science

Part Of

item.page.relation.ispartofseries

DOI

item.page.identifier.pmid

item.page.identifier.pmcid