Repository logo

A Fast and Scalable System to Visualize Contour Gradient from Spatio-temporal Data



Journal Title

Journal ISSN

Volume Title





Degree Level



Changes in geological processes that span over the years may often go unnoticed due to their inherent noise and variability. Natural phenomena such as riverbank erosion, and climate change in general, is invisible to humans unless appropriate measures are taken to analyze the underlying data. Visualization helps geological sciences to generate scientific insights into such long-term geological events. Commonly used approaches such as side-by-side contour plots and spaghetti plots do not provide a clear idea about the historical spatial trends. To overcome this challenge, we propose an image-gradient based approach called ContourDiff. ContourDiff overlays gradient vector over contour plots to analyze the trends of change across spatial regions and temporal domain. Our approach first aggregates for each location, its value differences from the neighboring points over the temporal domain, and then creates a vector field representing the prominent changes. Finally, it overlays the vectors (differential trends) along the contour paths, revealing the differential trends that the contour lines (isolines) experienced over time. We designed an interface, where users can interact with the generated visualization to reveal changes and trends in geospatial data. We evaluated our system using real-life datasets, consisting of millions of data points, where the visualizations were generated in less than a minute in a single-threaded execution. We show the potential of the system in detecting subtle changes from almost identical images, describe implementation challenges, speed-up techniques, and scope for improvements. Our experimental results reveal that ContourDiff can reliably visualize the differential trends, and provide a new way to explore the change pattern in spatiotemporal data. The expert evaluation of our system using real-life WRF (Weather Research and Forecasting) model output reveals the potential of our technique to generate useful insights on the spatio-temporal trends of geospatial variables.



Spatio-temporal data, Change detection, Contour Plot, Vector Overlay, Visualization System, ContourDiff



Master of Science (M.Sc.)


Computer Science


Computer Science


Part Of