Repository logo
 

The role of CIL1 in brassica carinata lateral meristem development

Date

2005-07-06

Journal Title

Journal ISSN

Volume Title

Publisher

ORCID

Type

Degree Level

Masters

Abstract

A cDNA sequence representing a Brassica carinata gene the expression of which is induced by copper chloride treatment, was isolated from a library constructed with mRNA from treated leaves, and designated CIL1 (COPPER CHLORIDE INDUCED in LEAVES). A Basic Local Alignment Search Tool search revealed that CIL1 has similarities to an auxin-induced gene, AIR12 from Arabidopsis thaliana. Southern blot analysis of CIL1 in B. carinata, B. nigra and B. oleracea indicated that it is a member of a small multigene family. Antisense CIL1 transgenic plants were generated to investigate the function of CIL1, and the resulting transformants displayed increased secondary branching suggesting that CIL1 has a role in regulating hormone content or plant architecture. Results of induction studies indicate that the auxin analog a-naphthalene acetic acid, the cytokinin 6-benzylaminopurine, and +/- abscisic acid increase expression of CIL1. Seven CIL1 antisense lines were grown to the T4 generation and were confirmed homozygous. Analysis of CIL1 expression using real-time quantitative RT-PCR showed reduced expression in every examined line. Transgenic plants produced many leaves at the lateral meristems indicating a release of apical dominance. Additionally, the concentrations of auxins, cytokinins, and abscisic acid were altered in the roots and stems of transgenic plants compared to non-transformed plants. Therefore, CIL1 has a role in regulating hormone content that affects lateral meristem activity, apical dominance, and leaf production.

Description

Keywords

cytokinin, catecholamine, phytohormone, auxin

Citation

Degree

Master of Science (M.Sc.)

Department

Biology

Program

Biology

Citation

Part Of

item.page.relation.ispartofseries

DOI

item.page.identifier.pmid

item.page.identifier.pmcid