Repository logo
 

Exploring Orientation Invariant Heuristic Features with Variant Window Length of 1D-CNN-LSTM in Human Activity Recognition

dc.contributor.authorBarua, Arnab
dc.contributor.authorFuller, Daniel
dc.contributor.authorMusa, Sumayyah
dc.contributor.authorJiang, Xianta
dc.date.accessioned2025-01-11T21:14:36Z
dc.date.available2025-01-11T21:14:36Z
dc.date.issued2022-07
dc.description.abstractMany studies have explored divergent deep neural networks in human activity recognition (HAR) using a single accelerometer sensor. Multiple types of deep neural networks, such as convolutional neural networks (CNN), long short-term memory (LSTM), or their hybridization (CNN-LSTM), have been implemented. However, the sensor orientation problem poses challenges in HAR, and the length of windows as inputs for the deep neural networks has mostly been adopted arbitrarily. This paper explores the effect of window lengths with orientation invariant heuristic features on the performance of 1D-CNN-LSTM in recognizing six human activities; sitting, lying, walking and running at three different speeds using data from an accelerometer sensor encapsulated into a smartphone. Forty-two participants performed the six mentioned activities by keeping smartphones in their pants pockets with arbitrary orientation. We conducted an inter-participant evaluation using 1D-CNN-LSTM architecture. We found that the average accuracy of the classifier was saturated to 80 ± 8.07% for window lengths greater than 65 using only four selected simple orientation invariant heuristic features. In addition, precision, recall and F1-measure in recognizing stationary activities such as sitting and lying decreased with increment of window length, whereas we encountered an increment in recognizing the non-stationary activities.
dc.description.sponsorshipThis research was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC), grant number RGPIN-2020-05525.
dc.description.versionPeer Reviewed
dc.identifier.doihttps://doi.org/10.3390/bios12070549
dc.identifier.urihttps://hdl.handle.net/10388/16427
dc.language.isoen
dc.publisherBiosensors
dc.rightsAttribution 2.5 Canadaen
dc.rights.urihttp://creativecommons.org/licenses/by/2.5/ca/
dc.subjecthuman activity
dc.subjectCNN
dc.subjectLSTM
dc.subjectwindow length
dc.subjectinter-participant evaluation
dc.subjectorientation invariant
dc.subjectaccelerometer
dc.subjectsmartphones
dc.titleExploring Orientation Invariant Heuristic Features with Variant Window Length of 1D-CNN-LSTM in Human Activity Recognition
dc.typeArticle

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Barua_etal_Orientation_Invariant.pdf
Size:
5.51 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.36 KB
Format:
Item-specific license agreed upon to submission
Description: