Photodisintegration of lithium isotopes
Date
2010-08
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
ORCID
Type
Degree Level
Doctoral
Abstract
We have performed a measurement of the photodisintegration of the lithium isotopes, ⁶Li and ⁷Li, using a monochromatic, polarised photon beam and a segmented neutron detector array which covers approximately ¼ of 4π srad. Using time-of-flight and scintillator light-output spectra we separate the data into individual reaction channels. This work is motivated by the need to compare with recent theoretical predictions and to provide data for future theoretical work.
For the photodisintegration of ⁶Li we took data at 12 photon energies between 8 and 35 MeV. We describe the data using a model consisting of two-body reaction channels and obtain angular distributions and absolute cross sections for many of these reaction channels. We compare our results with a recent Lorentz integral transform calculation (Bacca et al. Phys. Rev. C 69, 057001 (2004)). Our results are in reasonable agreement with the calculation, in contradiction with previous experimental results.
For the photodisintegration of ⁷Li, we took data at 9 photon energies between 10 and 35 MeV. We obtain cross sections for the reaction channel ⁷Li + γ → n + ⁶Li(g.s.) at all photon energies with angular distributions at all but the highest energy. We obtain angular distributions and total cross sections for reaction channels involving excited states of the daughter nucleus, ⁶Li, at select energies. We hope that these measurements will provide incentive for new theoretical calculations.
We observe neutrons that can only be described by the reaction channel ⁷Li+γ → n+⁶Li(10.0) which necessitates an excited state of ⁶Li with excitation energy Eₓ = 10.0±0.5 MeV that is not in the standard tables of excited states.
Description
Keywords
photonuclear physics, nuclear physics, few-body problems, giant dipole resonance
Citation
Degree
Doctor of Philosophy (Ph.D.)
Department
Physics and Engineering Physics
Program
Physics and Engineering Physics