Repository logo
 

Characterization and improvement of the nutritional value of ethanol by-products for swine

Date

2012-04-24

Journal Title

Journal ISSN

Volume Title

Publisher

ORCID

Type

Degree Level

Masters

Abstract

The nutritional value of distiller’s dried grains with solubles (DDGS) has not been assessed in swine. The nutritional value of corn and wheat DDGS, and possibilities to improve the nutritional value of wheat DDGS were for swine were investigated in two studies. In study 1, two experiments were conducted to determine digestibility and digestible contents of energy, amino acids (AA) and P in corn and wheat DDGS and wheat grain, together with N and P excretion and growth performance in grower-finisher pigs. In experiment 1, 12 barrows (64.6 ± 6.4 kg) were fitted with ileal T-cannulae and had restricted access (2.6 x maintenance) to a wheat control diet or one of three diets with 40% corn, wheat+corn (4:1) or wheat DDGS. For energy, apparent total tract digestibility was highest for wheat (85%; P < 0.05) and did not differ among DDGS (77 to 79%; P > 0.10). Total tract digestible energy (DE) was highest for corn DDGS (4292 kcal kg-1 DM; P < 0.05) and tended to differ among wheat+corn and wheat DDGS and wheat (4038, 4019, and 3807, respectively; P = 0.06). For lysine, apparent ileal digestibility (AID) was highest for wheat (71%; P < 0.05) and did not differ among DDGS (59 to 63%; P > 0.10). The apparent ileal digestible lysine content was highest for corn DDGS (0.51% DM; P < 0.05), intermediate for wheat+corn and wheat DDGS (0.45 and 0.42), and lowest for wheat (0.37%). For P, total tract digestibility was lowest for wheat (15%; P < 0.05) and did not differ among DDGS samples (53 to 56%; P > 0.10). Total N excretion was highest for wheat+corn and wheat DDGS (55 and 58 g d-1; P < 0.05), intermediate for corn DDGS (44) and lowest for wheat (36). Total P excretion did not differ among DDGS (11 g d-1) and was lowest for wheat (8; P < 0.05). In experiment 2, 100 pigs (52.0 ± 3.3 kg) were fed a wheat-pea control diet or one of three 25%-DDGS (corn, wheat+corn or wheat) diets (3.375 Mcal DE kg-1; 2.50 g AID lysine Mcal-1 DE) for 5 wk. Overall, average daily feed intake (ADFI) and daily gain (ADG) were higher for wheat than DDGS (P < 0.05) but feed efficiency did not differ (P > 0.10). In summary, the nutritional value of wheat DDGS for swine is higher than wheat and lower than corn DDGS and feeding DDGS reduced growth performance, partly via a reduced ADFI, indicating that anti-nutritional factors in DDGS require further investigation. In study 2, the effect of xylanase supplementation of wheat DDGS on nutrient digestibility and nutrient excretion was evaluated in grower-finisher pigs. Wheat-based diets with or without 40% wheat DDGS were tested with or without supplementary xylanase (4,000 U kg-1 feed) as a 2 x 2 factorial arrangement in a repeated Latin square design using eight barrows (29.4 ± 2.0 kg) fitted with ileal T-cannulae. Following a 6-day acclimation, faeces and urine were collected for 3 d, and ileal digesta for 2 d. The apparent ileal energy digestibility and DE content were not affected either by ingredient or xylanase (P > 0.05). The total tract energy digestibility and DE content were affected by ingredient (P > 0.05), but not by xylanase (P > 0.05). The total-tract energy digestibility was higher for wheat, but DE content was higher for wheat DDGS. The AID of arginine, isoleucine, leucine, phenylalanine, threonine, tryptophan and total AA were higher (P < 0.05), and of cysteine, histidine and lysine were similar (P > 0.05), and SID of phenylalanine was higher (P < 0.05), and of the other AA was similar (P > 0.10) for wheat DDGS compared to wheat. Supplementary xylanase improved AID and SID of most of the indispensable AA in wheat (P < 0.05), but not in wheat DDGS (P > 0.05). The apparent and standardized ileal AA contents were affected by ingredients (P < 0.05), but not by xylanase (P > 0.05). Digestible AA contents were higher for wheat DDGS than for wheat. The digestibility and digestible content of P were affected by ingredient and xylanse (P < 0.05). The P digestibility and digestible P contents were higher for wheat DDGS compared to wheat. Neither ingredient nor supplementary xylanase affected DM intake (P > 0.05). The DM excretion on daily basis and as a percentage of intake were affected by ingredient (P < 0.05), but not by xylanase (P > 0.05). Ingredients affected all N and P variables (P < 0.05), except percentage retained for both nutrients (P > 0.05). None of N variables (P > 0.05), but P intake and, retention on daily basis and as a percentage of intake were affected by xylanase (P < 0.05). The DM excretion and N and P intake, excretion and daily retention were higher for wheat DDGS compared to wheat. Lack of beneficial response to supplementary xylanase might be due to inappropriate enzyme level or insufficient substrate level of wheat DDGS. In addition, unidentified factors associated with fermentation and drying processes might constrain the nutritional value of wheat DDGS. Further studies are required to determine the proper xylanase inclusion level and/or to identify the factors associated with reduced nutrient digestibility of wheat DDGS.

Description

Keywords

DDGS, pig, digestibility, energy, amino acid, xylanase

Citation

Degree

Master of Science (M.Sc.)

Department

Animal and Poultry Science

Program

Animal Science

Part Of

item.page.relation.ispartofseries

DOI

item.page.identifier.pmid

item.page.identifier.pmcid