Repository logo
 

Peptide monolayers : an electrochemical study

Date

2007

Journal Title

Journal ISSN

Volume Title

Publisher

ORCID

Type

Degree Level

Doctoral

Abstract

Understanding electron-transfer (ET) processes in proteins is of fundamental importance. In a series of photophysical studies of well-behaved peptide model systems, it has become evident that the ET through peptide spacers is greatly influenced by the separation between the acceptor (A) and the donor (D), the nature of the peptide backbone, the amino acid sequence, and the resulting flexibility of the peptide conjugates. In particular, it was suggested in the literature that the presence of H-bonding will increase the rate of ET, and there is experimental evidence, mostly in proteins, to suggest that H-bonding indeed increases the rate of ET.My aim was to develop a potential-assisted deposition method for ferrocene peptide disulfides onto gold surfaces and investigate the electrochemical properties of these films. We made use of two classes of Fc-peptides: acylic ferrocenoyl (Fc)-peptide disulfides and cyclo-1,1’-Fc-peptide disulfides, allowing the preparation of tightly packed films of cyclic and acylic Fc-peptides on gold surfaces within 30 minutes. This is a significant benefit compared to the conventional “soaking” method of self-assembly requiring several days for the assembly of well-packed films. Such films exhibited considerably improved stability. This electrodeposition method should find wide-spread applications for the formation of tightly-packed films from disulfides. Our studies allowed a direct comparison of the electron transfer kinetics of cyclic and acyclic Fc-peptide disulfide systems. Our results showed faster ET kinetics for films prepared from cyclic Fc-peptide conjugates compared to the acyclic systems, presumably as a result of the enhanced rigidity of the Fc-peptide conjugates on the surface and/or an increase of the number of “conductive peptide wires” to the surface. Following the idea of peptide dynamics as a major contributor to the observed electron transfer rate in peptides and peptide conjugates, variable temperature electrochemical studies of Fc-peptide films were performed. An estimation of the reorganization energy associated with ferrocene/ferrocenium (Fc/Fc+) redox process allowed us to probe the role of peptide dynamics. Three counter-ions were tested, exhibiting different strengths of association with the Fc+ group (BF4- < ClO4- < PF6-) and the reorganization energies were evaluated in each case. The highest reorganization energy was obtained for the weakly interacting anion BF4-. Weakly interacting anions also showed significant broadness in the redox peaks and emergence of the second oxidation peak which is attributed to phase separation of the ferrocene group. Ferrocene agglomeration was not observed for any of the cyclic Fc-peptide conjugates but occurred for some of the acyclic systems. In particular, for acyclic Val and Leu containing Fc-peptide conjugates agglomeration were observed and was presumably caused by lateral interactions between the hydrophobic side-groups of the peptides. Further experiments involving the interaction of Fc-peptide films with alkali metal ions gave additional evidence that electron transfer is influenced significantly by peptide dynamics.

Description

Keywords

Ferrocene, Monolayers, Electrodeposition, Electrochemistry, Reorganization energy

Citation

Degree

Doctor of Philosophy (Ph.D.)

Department

Chemistry

Program

Chemistry

Part Of

item.page.relation.ispartofseries

DOI

item.page.identifier.pmid

item.page.identifier.pmcid