Bounds on 𝑎_𝜇^(HVP,LO) using Hölder's inequalities and finite-energy QCD sum rules
Date
2024-09-26
Authors
Li, Siyuan
Steele, Tom
Ho, Jason
R-Rahaman, Raza
Williams, K.
Kleiv, Robin
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
ORCID
Type
Article
Degree Level
Abstract
This study establishes bounds on the leading-order (LO) hadronic vacuum polarization (HVP) contribution to the anomalous magnetic moment of the muon (𝑎_𝜇^(HVP,LO), 𝑎𝜇 = (𝑔 − 2)𝜇∕2) by using Hölder’s inequality and related inequalities in Finite-Energy QCD sum rules. Considering contributions from light quarks (𝑢, 𝑑, 𝑠) up to five-loop order in perturbation theory within the chiral limit, leading-order light-quark mass corrections, next-to-leading order for dimension-four QCD condensates, and leading-order for dimension-six QCD condensates, the study finds QCD lower and upper bounds as (657.0 ± 34.8) × 10−10 ≤ 𝑎_𝜇^(HVP,LO) ≤ (788.4 ± 41.8) × 10−10.
Description
2405-6014/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/)
Keywords
Muon, g - 2, HVP, QCD sum rules, Finite-energy QCD sum rules
Citation
Li, S., Steele, T. G., Ho, J., Raza, R., Williams, K., & R.T. Kleiv. (2024). Bounds on 𝑎_𝜇^(HVP,LO) using Hölder’s inequalities and finite-energy QCD sum rules. Nuclear and Particle Physics Proceedings. https://doi.org/10.1016/j.nuclphysbps.2024.09.002
Degree
Department
Program
Advisor
Committee
Part Of
item.page.relation.ispartofseries
DOI
10.1016/j.nuclphysbps.2024.09.002