Repository logo
 

Digital Twins and Blockchain for IoT Management

Date

2023-10-11

Journal Title

Journal ISSN

Volume Title

Publisher

ORCID

0000-0001-6886-3513

Type

Thesis

Degree Level

Doctoral

Abstract

We live in a data-driven world powered by sensors getting data from anywhere at any time. This advancement is possible thanks to the Internet of Things (IoT). IoT embeds common physical objects with heterogeneous sensing, actuating, and communication capabilities to collect data from the environment and people. These objects are generally known as things and exchange data with other things, entities, computational processes, and systems over the internet. Consequently, a web of devices and computational processes emerges involving billions of entities collecting, processing, and sharing data. As a result, we now have an internet of entities/things that process and produce data, an ever-growing volume that can easily exceed petabytes. Therefore, there is a need for novel management approaches to handle the previously unheard number of IoT devices, processes, and data streams. This dissertation focuses on solutions for IoT management using decentralized technologies. A massive number of IoT devices interact with software and hardware components and are owned by different people. Therefore, there is a need for decentralized management. Blockchain is a capable and promising distributed ledger technology with features to support decentralized systems with large numbers of devices. People should not have to interact with these devices or data streams directly. Therefore, there is a need to abstract access to these components. Digital twins are software artifacts that can abstract an object, a process, or a system to enable communication between the physical and digital worlds. Fog/edge computing is the alternative to the cloud to provide services with less latency. This research uses blockchain technology, digital twins, and fog/edge computing for IoT management. The systems developed in this dissertation enable configuration, self-management, zero-trust management, and data streaming view provisioning from a fog/edge layer. In this way, this massive number of things and the data they produce are managed through services distributed across nodes close to them, providing access and configuration security and privacy protection.

Description

Keywords

Digital twins, Internet of Things, IoT, blockchain, smart contracts, consensus, access management, configuration management, self-management, autonomous systems, smart things, data streaming, trust, data trust, zero trust, security, privacy, distributed systems

Citation

Degree

Doctor of Philosophy (Ph.D.)

Department

Computer Science

Program

Computer Science

Part Of

item.page.relation.ispartofseries

DOI

item.page.identifier.pmid

item.page.identifier.pmcid