Repository logo
 

Photoemission electron microscopy and atomic force microscopy of phase- separated Langmuir-Blodgett monolayer thin films

Date

2009-12

Journal Title

Journal ISSN

Volume Title

Publisher

ORCID

Type

Degree Level

Masters

Abstract

Langmuir-Blodgett (LB) organic monomolecular (monolayer) films containing fatty acids and their perfluorinated counterparts separate into phases under certain conditions. These perfluorinated surfactant containing mixed-phase systems have been shown to exhibit many favourable attributes in comparison to non- perfluorinated surfactant monolayers. In this thesis project, two of these films were investigated. One film is a 2:1 ratio mixture of arachidic acid (C19H39COOH – AA) to perfluorotetradecanoic acid (C13F27COOH – PA), which phase-separates into hexagonal domains ~6 ìm large (2:1 ratio of AA to PA – 2AA1PA). The other film is a 2:1 mixture of stearic acid (C17H35COOH - SA) to PA, which phase-separates into linear domains ~300 nm wide (2:1 ratio of SA to PA – 2SA1PA). Through the use of atomic force microscopy (AFM), and various synchrotron photoemission electron microscopy-based (PEEM) techniques, the films were characterized. As properties such as molecular organization, and dispersion of the molecules in the film, affect film function, it is necessary to use a variety of techniques to better understand order and composition in the films. First, the well-known and previously-studied film, 2AA1PA, was used to better understand contrast mechanisms in the energy filtered x-ray photoemission electron microscope (X-PEEM) at the CLS. Through the use of techniques such as secondary electron emission microscopy (SEEM), ultraviolet photoelectron spectroscopy (UPS), and x-ray linear dichroism microscopy (XLDM), the effects of secondary electrons, valence character, and polarization dependence were studied so as to better understand their contribution to contrast in energy-filtered PEEM-based spectromicroscopy. Second, the composition and organization of a novel system (2SA1PA), was characterized using traditional near-edge x-ray absorption fine-structure (NEXAFS) spectroscopy. As the size of the domains in the 2SA1PA system are below the spatial resolution limit of PEEM spectromicroscopy, methods involving selective phase dissolution, and spectrum subtraction, were used to acquire phase composition and molecular order information. The high lateral and vertical spatial resolution of AFM allowed physical imaging and confirmation of sample structure, as well as very accurate domain height determination. X-PEEM supplements this with chemical sensitivity using high spatial resolution spectromicroscopy. Therefore, using AFM and X-PEEM as complimentary techniques, it is possible to physically and chemically characterize phase-separated monolayer films.

Description

Keywords

surfactants, monolayers, Langmuir-Blodgett, PEEM, synchrotron, NEXAFS, spectromicroscopy

Citation

Degree

Master of Science (M.Sc.)

Department

Chemistry

Program

Chemistry

Part Of

item.page.relation.ispartofseries

DOI

item.page.identifier.pmid

item.page.identifier.pmcid