Repository logo
 

The role of Hoxa2 gene in oligodendrocyte development

dc.contributor.advisorNazarali, Adil J.en_US
dc.contributor.advisorDoucette, J. Ronalden_US
dc.contributor.committeeMemberVerge, Valerie M. K.en_US
dc.contributor.committeeMemberFoldvari, Mariannaen_US
dc.contributor.committeeMemberDevon, Richarden_US
dc.contributor.committeeMemberBandy, Brianen_US
dc.contributor.committeeMemberAlcorn, Janeen_US
dc.contributor.committeeMemberYong, V. Weeen_US
dc.creatorNicolay, Danette Jacineen_US
dc.date.accessioned2007-08-22T14:08:25Zen_US
dc.date.accessioned2013-01-04T04:53:50Z
dc.date.available2008-08-23T08:00:00Zen_US
dc.date.available2013-01-04T04:53:50Z
dc.date.created2007en_US
dc.date.issued2007en_US
dc.date.submitted2007en_US
dc.description.abstractAlthough numerous transcription factors (TFs) are expressed by oligodendrocytes (OGs), the role(s) of most of these TFs in oligodendrogenesis remains to be elucidated. One such TF is Hoxa2, which was recently shown to be expressed by O4-positive (+) pro-OGs. Hence, the main objectives of this thesis were to determine the expression profile and function(s) of Hoxa2 during OG development. Immunocytochemical analysis of primary mixed glial cultures demonstrated that Hoxa2 is expressed throughout oligodendrogenesis, diminishing only with the acquisition of a myelinating phenotype. Subsequently, immunohistochemical analysis suggested that Hoxa2 is expressed by migratory oligodendroglial cells in the embryonic spinal cord. However, double immunofluorescent analysis of Hoxa2 transgenic knockout mice showed that OG specification and early maturation proceed normally in the absence of Hoxa2 in the spinal cord. As Hoxa2 is one of 39 murine Hox genes, which exhibit extensive overlapping expression profiles in the spinal cord, we decided to examine the expression of an additional Hox TF, Hoxb4, during OG development. Immunocytochemical analysis of primary mixed glial cultures demonstrated that Hoxb4 is also expressed throughout OG development. Furthermore, comparison of the expression profiles of Hoxb4 and Olig2 suggested that Hoxb4 is expressed by oligodendroglial cells in the spinal cord. Hence, Hoxb4, as well as other Hox TFs could compensate for Hoxa2 in the spinal cord in its absence. As the anterior boundary of most Hox genes has been found to be in the hindbrain or spinal cord, we decided to look at the telencephalon which would be less likely to have compensatory mechanisms. Our results showed that similar to the spinal cord, Hoxa2 is expressed by oligodendroglial cells in the telencephalon. Subsequently, it was found that over-expressing Hoxa2 in CG4 cells, an oligodendroglial cell line derived from the perinatal rat cerebral cortex, impairs their differentiation. In an attempt to determine the mechanism by which it accomplishes this, we examined the expression of polysialylated neural cell adhesion molecule (PSA-NCAM), which has been implicated in this process. Contrary to our expectations, however, it was found that over-expressing Hoxa2 in CG4 cells results in significantly fewer PSA-NCAM+ cells. Hence, the results suggest that Hoxa2’s effect on OG differentiation is independent of its effect on PSA-NCAM expression. The expression of Hox genes is enhanced by retinoic acid (RA), which, in turn, both inhibits, as well as promotes OG differentiation. Although the reason for these opposing roles is uncertain, examination of the experimental protocols utilized by different research groups reveals disparities in age, CNS region, as well as RA concentration. As a result, RA’s effect on oligodendrogenesis could be stage- and/or concentration-dependent. In order to determine which of these factors could impact RA’s effect on OG differentiation we treated CG4 cells with two different concentrations of RA at two distinct time points. The results showed that both factors (concentration and time/stage) can impact RA’s effect on CG4 cell differentiation. In an attempt to determine the mechanism by which it accomplishes this, we examined the expression of PSA-NCAM. Contrary to our expectations, the results suggest that RA’s effect on CG4 differentiation is independent of its effect on PSA-NCAM expression. The results of this thesis suggest that Hoxa2 and RA could play multiple roles in OG development. Although these roles appear to be similar, further research will be needed to determine whether Hoxa2 acts a downstream effector in the RA signaling pathway in oligodendroglial cells.en_US
dc.identifier.urihttp://hdl.handle.net/10388/etd-08222007-140825en_US
dc.language.isoen_USen_US
dc.subjectretinoic aciden_US
dc.subjectsignaling pathwaysen_US
dc.subjectdifferentiationen_US
dc.subjectspecificationen_US
dc.subjecttranscription factorsen_US
dc.titleThe role of Hoxa2 gene in oligodendrocyte developmenten_US
dc.type.genreThesisen_US
dc.type.materialtexten_US
thesis.degree.departmentPharmacyen_US
thesis.degree.disciplinePharmacyen_US
thesis.degree.grantorUniversity of Saskatchewanen_US
thesis.degree.levelDoctoralen_US
thesis.degree.nameDoctor of Philosophy (Ph.D.)en_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
nicolay_d.pdf
Size:
12.05 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
905 B
Format:
Plain Text
Description: