USING BLOCKCHAIN TO BUILD DECENTRALIZED ACCESS CONTROL IN A PEER-TO-PEER E-LEARNING PLATFORM
Date
2018-02-06
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
ORCID
0000-0003-0592-7588
Type
Thesis
Degree Level
Masters
Abstract
In the context of E-learning platforms, the amount of research focusing on access control is proliferating. However, research related to the decentralized access control in this field is scarce. To improve such area of research, an innovative model of decentralized access control used to protect the collaborative peer-to-peer E-learning platform has been proposed. In this model, the integrity, authenticity, non-repudiation and traceability of E-learning resources are ensured by using Blockchain platform. Also, RESTful web service and Go/Java programming language will be used as tools to implement this model. A key metric is measured to evaluate the proposed model: average response time. To increase the accuracy, some experiments (144) have been carried out. The same experiment is conducted in two comparatively different network environment: Local Area Network (LAN) and Cloud Web Service (such as Amazon Web Service). LAN running environment represents the optimal condition while Cloud environment stands for the actual condition in the real world. When the number of clients in my proposed E-learning platform is relatively small (consisting of one to thirty concurrent clients interacting with E-learning resources), the average response time in the LAN environment is much faster (nearly 1.5 times) than that in Cloud environment. Nevertheless, when the number of clients is on a large scale, the difference of average response time between this two environment becomes insignificant. Besides, adding servers in both environments can increase the horizontal scalability. Furthermore, adding servers in Cloud environment can boost the system performance dramatically. However, extending the delay could have an impact on the system performance but negligible.
Description
Keywords
E-learning, Access control, Blockchain, RESTful Web Services
Citation
Degree
Master of Science (M.Sc.)
Department
Computer Science
Program
Computer Science