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ABSTRACT 
The disease stemphylium blight has become common in lentil fields in Saskatchewan, but 

the effect of this disease on developing lentil plants, has not been studied under field conditions. 

Even though Stemphylium botryosum is suspected to be the pathogen causing stemphylium blight 

in lentil around the world, there is no confirmation of the pathogenic species involved in 

stemphylium blight of lentil in Saskatchewan. The objectives of this study were to determine the 

effect on lentil seed quantity and quality of S. botryosum infection at the seedling, the early-

flowering, the mid-flowering or the podding stages, and to characterize the pathogen or pathogens 

causing stemphylium blight in Saskatchewan lentil fields.  

Three field experiments were conducted over two years using green polyethylene low 

tunnels to create conducive environments and control the timing of infection. Cumulative disease 

severity, measured as area under the disease progress curve, in lentil treatments inoculated at the 

seedling stage was higher compared to treatments inoculated at later growth stages or to 

uninoculated control treatments, in which some stemphylium blight developed due to natural 

inoculum. Neither the amount of harvested seed, nor seed weight or seed size were reduced 

compared to the uninoculated control, even though disease severity was higher in inoculated versus 

uninoculated treatments.  Seed infection levels of 2.6 to 3.4% in seed harvested from treatments 

that were inoculated at the seedling, early and mid-flower stages were significantly higher than 

those observed in seeds from uninoculated control treatments (0.6%) or from treatments inoculated 

at podding (1.2%).  

Field isolates of Stemphylium spp. were compared to the ex-type isolate by morphology, 

and additionally to sequence data of five Stemphylium spp. and one Alternaria sp. obtained from 

GenBank by molecular phylogenetic analyses of the internal transcribe spacer (ITS) and the 

glyceraldehyde 3 – phosphate dehydrogenase (gpd) gene regions. Morphology of colony and 

conidia were not informative since features overlapped except for three isolates. Results of the 

molecular phylogenetic analyses revealed that S. botryosum is one of two possible Stemphylium 

spp. involved in the development of stemphylium blight in lentil. The three isolates with different 

morphology were also consistently clustered as a species distinct from the Stemphylium species.  

Although yield loss could not be demonstrated here, further studies on the epidemiology 

of the pathogens causing stemphylium blight  in Saskatchewan lentil fields are warranted in view 

of the fact that more than one candidate species was identified as the causal agent.   
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1. INTRODUCTION  
Lentil (Lens culinaris Medikus) is a pulse crop species belonging to the family 

Leguminosae. It is widely cultivated worldwide, and similar to chickpea (Cicer arietinum L.) is 

endemic to the Middle East (Yadav et al., 2007; Muehlbauer, 2011). Lentil is an ancient crop that 

has been bred for thousands of years in its original location (Cubero et al., 2009). As a result of 

human movement, lentil was spread around the world, from Western Asia to north Africa, the 

Indian sub-continent, and more recently to the Americas (Bayaa, et al., 1995).  

Lentil has gained in importance in the world for two major reasons. First, lentil is a 

nutritious food with 25 to 26% protein content (Yadav et al., 2007; Muehlbauer, 2011; Tewari et 

al., 2012). This is comparable to faba bean, higher than chickpea, and more than double that of 

wheat (Erskine et al., 1985). In addition, lentil is rich in vitamins A and B, and minerals such as 

phosphorus, iron, and calcium (Yadav et al., 2007). Likewise, lentil seedlings consumed as a fresh 

food, are rich in amino acids (Rozan et al., 2001). Lentil is a very versatile food, e.g. in India it is 

mainly prepared as dhal (Muehlbauer, 2011; Tewari et al., 2012; Yadav et al., 2007). Moreover, 

lentil crop residue is used to feed  animals, providing a nutritious source of dry forage (Muehlbauer, 

2011).In the textile and printing industry, lentil seed has been used as a dye (Yadav et al., 2007). 

Lentil is produced on significant areas in many regions of the world. In 2013, nine countries 

including Australia, Canada, India, Turkey and the USA grew lentil on more than 100,000 ha each, 

whereas another 32 countries produced lentil on a smaller scale (FAO, 2013). In many countries, 

such as Turkey, the crop is consumed locally (Muehlbauer, 2011).  Furthermore, major producers 

are also found in the Americas, from Chile and Argentina in the south, to Canada and the United 

States in the north, but in these countries lentil is primarily for export (Muehlbauer, 2011). In 

Australia, lentil production became popular at the end of the last century, and production increased 

gradually to more than four million metric tons by 2005, even though Australia is considered one 

of the countries with the lowest yield expectations, averaging 852 kg/ha. Lentil can be produced in 

semiarid conditions without irrigation systems or pest management (Muehlbauer, 2011). One of 

the benefits of lentil is the ability to tolerate dry, cool conditions; and production is well suited to 



2 

 

rain-fed conditions (Tewari et al., 2012). Inclusion of lentil in rotations benefits producers by 

contributing nitrogen to the soil, requiring less addition of nitrogen fertilizer, due to the ability of 

lentil to fix atmospheric nitrogen (Muehlbauer, 2011).  

For these reasons lentil production has increased greatly in Canada since its introduction in 

1970 (Morrall, 2003). Canada is one of the most important countries in pulse production, less as a 

consumer, and largely as an exporter. Canada is the top exporter of lentil in the world with an 

economic impact of more than CAD $ 980 million (FAOSTAT3, 2015). With more than one 

million tonnes produced in 2012, lentil ranked fifth among Canadian export commodities. Lentil 

production in Canada has risen from 142,800 to 1,537,900 tonnes during 1991 to 2012 

(FAOSTAT3, 2015). In 2014, Saskatchewan produced 96% of Canadian lentil, of which 98% was 

exported contributing 65% of world lentil exports (Saskatchewan Ministry of Agriculture, 2015).  

Lentil production is affected by biotic and abiotic factors (Tewari et al., 2012). To improve 

production, genetic variability of lentil cultivars is being exploited to develop varieties that offer 

increased yield. Some studies at the International Center for Agricultural Research in the Dry Areas 

(ICARDA) have focused on the phylogeny of wild lentil to evaluate their use in developing a high-

yielding lentil for rain-fed field conditions (Bayaa et al., 1995). Additionally, biotic stresses such 

as diseases can impact productivity and consequently result in yield loss. In lentil, more than 19 

fungi have been reported as disease-causing pathogens (Muehlbauer, 2011), of which stemphylium 

blight is one among several sighted in Saskatchewan. This disease is suspected to be caused by 

Stemphylium botryosum (Wallr.), a member of the family Pleosporacea.  

In Bangladesh, the first report of stemphylium blight caused by S. sarciformis L. was 

published in 1986, where the disease has been reported to cause yield losses of more than 80% 

(Bakr and Ahmed, 1992). In 2009, lentil yields decreased in Bangladesh due to abiotic and biotic 

stresses, among which S. botryosum was the most important one (Rahman et al., 2010). This fungus 

can cause 100% yield loss under favorable conditions for stemphylium blight development (Hosen 

et al., 2009). 

Stemphylium spp. warrant further investigation as lentil pathogens in Saskatchewan fields, 

in particular because the effect of this group of fungi on lentil plants has not been studied under 

field conditions. Furthermore, the particular species affecting lentil in Saskatchewan has not been 

confirmed. This project was based on two hypotheses. Firstly, it was hypothesized that 
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stemphylium blight causes yield loss in Saskatchewan lentil when plants are infected at the 

reproductive stages. Secondly, it was hypothesized that stemphylium blight on lentil in 

Saskatchewan is caused by the species S. botryosum. To prove these hypotheses, experiments were 

initiated with the objectives to  

1. assess the effects on lentil yield and seed quality in response to infection by S. botryosum 

at seedling, early-flowering, mid-flowering and podding stages in field trials, and to 

2. characterize the species of Stemphylium infecting lentil in Saskatchewan by morphological 

descriptions and molecular phylogenetic analyses. 
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2. LITERATURE REVIEW   

2.1. Lens culinaris Medikus 

2.1.1 Origins  
Lentil is an ancient pulse crop endemic to the Middle East (Yadav et al., 2007; Muehlbauer, 

2011; Tewari et al., 2012), dating back to the Neolithic era, when the first humans cultivated, 

domesticated, and consumed this crop as an important source of nutrients. For thousands of years 

lentil was spread through human activities from western Asia to the Indian subcontinent, and later 

to Europe and some north African countries (Muehlbauer, 2011). Centuries later, during the 

colonization of the Americas, lentil arrived in South America and was recognized as a nutritious 

food source cooked in a variety of ways. In the last century, lentil arrived in North America, and 

has become an important economic pulse crop (Koike et al. 2001; Muehlbauer, 2011; Thomas et 

al. 2011; Misawa, 2012).  

Molecular studies and breeding experiments with wild species have helped to determine 

the origins of the cultivated species Lens culinaris. Among the wild species in the genus Lens, there 

are two possible progenitors of L. culinaris: L. orientalis Boiss and L. nigricans Bieb. Both have 

the same chromosome number (2n =14) as L. culinaris, but differ in their eco-geographical origin. 

It has been demonstrated that L. culinaris is more closely related to L. orientalis than L. nigricans, 

which supports the conclusion that L. culinaris originated in the Middle East (Ladizinsky, 1979).   

2.1.2 Taxonomic classification  
The Leguminosae, also referred to as Papilionaceae of Fabaceae (Muehlbauer, 2011), has 

over 18,000 species in 700 genera, and ranks third among the largest taxonomic groups, hence it is 

an important family (Trinick, 1982). Within the Leguminosae, the tribe Viciaea comprises 

important genera such as Cicer, Vicia, and Pisum (Muehlbauer, 2011; Tewari et al., 2012), as well 

as the genus Lens Miller (Landizinsky, 1979). Some annual species belonging to this genus are L. 

lamottei (Czefr), L. ervoides (Brign.), L. tomentosus, L. odemensis, L. nigricans (Bieb.), and L. 
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orientalis (Boiss.) (Muehlbauer, 2011). However the most cultivated species of the genus Lens is 

L. culinaris (Medik) (Landizinsky, 1979). 

2.1.3 Morphology 
Lentil is an annual herbaceous plant (Landizinsky, 1979). Depending on environmental 

conditions and cultivar, lentil plant height can vary from 15 to 75 cm. The morphology is described 

simply as a thin, erect stem with primary branches growing from the main stem with abundant 

secondary branches that give rise to flowers and eventually seeds (Muehlbauer, 2011).  

Lentil has a taproot system that grows to about 60 cm in a shallow rhizosphere and forms 

several skinny roots (Saxena, 2009). Atmospheric nitrogen is fixed in root nodules, which develop 

in response to infection by the bacterium Rhizobium leguminosarum (Muehlbauer, 2011). Nitrogen 

fixation is one of the desirable features that make lentil a successful crop. The flower has 

papilionaceous features, is 4 to 8 mm long, and ranges in colour from white to shades of purple. 

Up to four flowers can be borne on each peduncle, a characteristic that facilitates self-pollination 

(Muehlbauer, 2011; Tewari et al., 2012). Lentil leaves are approximately 1 to 3 cm in length and 

compound with tendrils at the end. They are arranged in 14 leaflets, each one with a tiny stipule at 

the base of the stem. The pods are oblong and flattened, and each has one or two, but not more than 

three seeds (Muehlbauer, 2011).  

Lentil seeds vary greatly in size and colour. Based on seed size, lentil cultivars can be 

classified into two groups: small-seeded Persian or microsperma lentil (Muehlbauer, 2011; Yadav 

et al., 2007) range from 2 to 4 mm in diameter with a thousand seed weight of approximately 40 g 

(Saskatchewan Pulse Growers. 2012.). On the other hand, large seeded or macrosperma lentil 

(Yadav et al., 2007) range from 4 to 9 mm in diameter (Muehlbauer, 2011) and are named Chilean 

with more than 50 g per thousand seeds (Saskatchewan Ministry of Agriculture. 2010). Lentil seeds 

are also grouped by testa colour into green or greenish-red, gray, black, brown, purple, black 

mottling and light tan (Muehlbauer, 2011). Varieties are grouped into ten market classes based on 

seed size and colour: small red, extra small red, large red, small green, extra small green, medium 

green, large green, French green, green cotyledon, and Spanish brown (Saskatchewan Ministry of 

Agriculture, 2013).  

According to the Saskatchewan Ministry of Agriculture (2013), producers in Saskatchewan 

have the option to choose a lentil cultivar by relative maturity ranging from early to late maturing, 
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disease resistance (ascochyta blight and anthracnose Race 1), seed size and agro-ecological zone. 

This crop is adapted to the brown and dark soil zones of Saskatchewan (Saskatchewan Pulse 

Growers, 2012). 

2.1.4 Life cycle 
The lentil plant has an indeterminate growth habit, and when favourable environmental 

conditions are present, vegetative and generative growth overlap during the season. Lentil is highly 

influenced by temperature. For example, in the Mediterranean countries and North Africa where 

the environmental conditions are warm, vegetative and reproductive growth occurs over a shorter 

time (75-100 days after sowing) compared to cold regions (120-160 days after sowing) (Saxena, 

2009). Even though lentil is moderately resistant to high temperature, it is considered a cool season 

crop (Saxena, 2009). In the Middle East - North Africa region it is cultivated as a winter crop as 

the rain accumulated during the rainy season is used to irrigate the crop (Tewari et al., 2012). A 

similar concept is applied on the Canadian prairies where the moisture accumulated from winter 

snow facilitates germination in spring, the cool spring conditions promote vegetative growth and 

the warm and dry conditions during the summer result in the maturation of the crop (Shrestha et 

al., 2009). 

2.1.4.1 Flowering process 
The papilionaceous lentil flowers can experience low levels of out-crossing by pollinators, 

but this is not common, and successful fecundity during anthesis relies on self-fertilization (Kaye, 

1999). The flowering process may be affected by intrinsic constraints such as resource competition 

among plant structures during vegetative growth while flower development is taking place at the 

same time (Mondal, et al., 2013). It may also be affected genetically, controlled through single-

gene and polygenic systems that determine the days to flowering. In lentil, for example, early-

flowering is governed by the recessive gene sn (Sarker et al. 1999).   

In addition, extrinsic factors such as the environment can affect flowering. Temperatures 

above 20oC promote early flowering in lentil and reduced branching or vegetative growth, while 

post-flowering, dry-matter production and seed set is negatively affected (Summerfield et al. 1989). 
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2.1.4.2 Physiology of seed yield 
The major factors that limit higher yields are similar to those that limit flowering, including 

biotic and abiotic stresses, poor genetic variability, and lack of genotypic adaptation (Tewari et al., 

2012). Among abiotic stresses, low moisture availability is the most important since water deficits 

during flowering reduce plant height and leaf area, which results in reduced seed yield (Shrestha 

et al., 2009). 

Lentil forms many flowers, yet few develop into pods. Nevertheless, long periods of 

flowering may lead to higher yield (Mondal, et al., 2013). On the other hand, harvest index is 

negatively affected by competition for plant resources between pod set and vegetative growth 

(Mondal et al., 2013; Malek et al., 2012). It has been suggested that increments in resources may 

lead to increases in seed yield; however, seed yield is determined by the interaction of genotype 

and environment (Hanlan et al., 2006).  

Several physiological parameters are involved in the production of seed (Mondal et al., 

2013). Traits such as leaf area, crop growth rate, net assimilation rate, relative growth rate, total 

biomass, maximum absolute growth rate and leaf area index, as well as the variability of these traits 

among genotypes have been described in lentil and other pulse crops such as soybean and mung 

bean (Mondal et al., 2013; Malek et al., 2012). High values in leaf area and high relative growth 

rate lead to high total biomass and therefore higher seed yields.  

2.1.5 Diseases 
Throughout the growing period, lentil plants are affected by abiotic and biotic stresses 

(Muehlbauer, 2011; Tewari et al., 2012). Worldwide, pulses are attacked throughout their life cycle 

and in all plant parts by a wide range of plant pathogens, such as bacteria, nematodes, 

phytoplasmas, viruses, fungi and also some parasitic plants (Allen and Lenne, 1998). Fungi are the 

largest group of plant pathogens that cause disease in legumes (Bayaa and Erkskine, 1998). They 

can attack any part of the host plant, but there are also some fungal pathogens that specialize on 

specific plant parts (Punja, 2003). 

Lentil crops in Canadian fields are affected by several fungal diseases at various life stages 

(Morrall, 2003). Root diseases commonly found on the Canadian prairies are root rot or damping-

off caused by a group of fungi often including F. avenaceum Corda ex Fr. Sacc, Pythium spp. and 

R. solani, and more recently Aphanomyces euteiches Drechsl. (Banniza et al., 2013). Seedling 
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blight and damping-off can also be caused by B. cinerea and seed-borne Sclerotina sclerotiorum 

de Bary. From the seedling stage to maturity lentil can be affected by foliar diseases such as 

ascochyta blight, anthracnose, sclerotinia stem and pod rot or white mould caused by Sclerotinia 

sclerotiorum, botrytis stem and pod rot, septoria leaf spot caused by Septoria spp. and stemphylium 

blight (Morrall, 2003). Other diseases of minor importance reported elsewhere in North America 

are leaf spot (Alternaria alternate Fr. Keisser) and leaf mould (Cladosporium herbarum Pers. 

Link), (Bayaa and Erkskine, 1998). 

Bacterial diseases are considered unimportant in Canadian fields, whereas those caused by 

viruses have the potential to affect seed yield and quality. However, symptoms other than stunting 

of plants, leaf malformation and yellow or red discolorations in lentil have not been observed 

(Morrall, 2003). Five species of nematodes were reported in Syria and India as pathogens of lentil 

(Bayaa and Erskine, 1998), whereas specific data from western Canada is currently not available. 

2.2. Importance of Stemphylium species  
Several species of the genus Stemphylium have recently gained in importance as causal 

agents of plant diseases around the world. For example, S. vesicarium and S. botryosum were 

isolated from Chinese chive (Allium fistulosum L.) leaves in Hokkaido, the northernmost island of 

Japan in 2012 (Misawa and Yasuota, 2012). Between these two Stemphylium spp., the latter was 

identified as the causal agent of brown leaf blight inducing considerable damages in Chinese chive 

crops (Misawa, 2012). Moreover, S. botryosum can cause a serious defoliation of kiwi (Actinidia 

deliciosa C.F. Liang & A.R. Ferguson.) in Greece (Thomidis and Michailides, 2008), and this 

species was reported to infect spinach (Spinacia oleracea L.) in the United States; an incidence of 

approximately 29% was reported (Koike et al., 2001). There are more than 33 species of 

Stemphylium described as saprophytes or pathogens, some of which have a wide range of hosts 

(Camara et al., 2002) over a large geographical distribution (Table 2.1). 
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Table 2.1. Distribution and hosts of Stemphylium species 
Stemphylium species Host Location Reference 
Stemphylium botryosum  Allium cepa USA Meredith, 1965 
S. botryosum f. sp. 
lycopersici 

Lycopersicum 
esculentum 

Israel Bashi and Rotem, 1974 

S. botryosum Medicago sativa USA Cowling et al., 1981 
S. botryosum 
S. herbarum 
S. alfalfa 

Medicago sativa Austria and 
USA 

Simmons, 1985 

S. botryosum 
S. vesicarium 
 
 
 
 
S. globuliferum 

Isolated from soil 
Echium sp. 
Beta vulgaris 
Medicago sativa 
Simmondsia 
chinensis 

Austria Irwin et al., 1986 

S. vesicarium 
S. botryosum 
S. majusculum 

Asparagus officinalis 
Lactuca sativa  
Asparagus officinalis 

USA 
USA 
England 

Fallon et al., 1987 

S. botryosum  Lens culinaris  Hungary Simay, 1990 
S. botryosum Lycopersicum 

esculentum 
India Mathur and Bhatnagar, 

1992 
S. vesicarium Pyrus communis Spain Montesinos and Vilardell, 

1992 
S. sarciniformis Lens culinaris Bangladesh, 

India 
Bakr and Ahmed, 1992 

S. vesicarium Allium cepa South Africa Aveling and Snyman, 
1993 

S. botryosum  
S, majusculum 

Brassica napus Italy Solfrizzo et al., 1994 

S. botryosum 
S. herbarum 
S. alfalfa 
S. vesicarium 

 
Brassica napus 
Brassica napus 
Brassica napus 
Pyrus communis 

 
Italy 
Italy 
Italy 
Denmark 

 
Andersen et al., 1995 

S. botryosum Lens culinaris Bangladesh Chowdhury et al., 1997 
S. vesicarium Pyrus communis Italy Singh et al., 2000 
S. vesicarium Allium sativum Spain Basallote-Ureba et al., 

1999 
S. vesicarium Pyrus communis Spain Llorente et al., 2000 
S. solani Gossypium hirsutum Brazil Metha and Brogin, 2000 
S. vesicarium Asparagus officinalis Michigan, USA Meyer et al., 2000 
S. vesicarium Allium sativum Australia Suheri and Prince, 2000 
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Table 2.1: Continued. 
Stemphylium species Host Location Reference 
S. vesicarium Pyrus communis Spain Llorente and Montesinos, 

2001 
S. vesicarium Pyrus communis Italy Rossi et al., 2005 
S. botryosum Lens culinaris India Huq and Khan, 2008 
S. phaseolina 
S. variabilis 

Phaseolus vulgaris 
Allium sativum 

China 
France  

Wang et al., 2010 

S. botryosum Lupinus 
angustifolious 

Australia Thomas et al., 2011 

S. solani Solanum 
lycopersicum 

Malaysia Nasehi et al., 2012 

S. solani Cucumis sativus Greece Vakalounakis and 
Markakis, 2013 

 

Stemphylium species may also be pathogenic to animals and humans, and allergens 

produced by A. alternate were also reported to be produced by S. botryosum (Gutierrez–Rodriguez 

et al., 2011). The mycotoxin stemphol, exuded by S. botryosum and S. majusculum, may cause cell 

death in mammals as was observed in plant cells (Solfrizzo et al., 1994). 

Phytopathogenic microorganism may directly affect plants by physical interference with, 

and obstruction or destruction of plant tissue, and / or indirect by causing different levels of stress 

as a result of exuded toxins (Heiny and Gilchrist, 1991). Susceptibility to a toxin-producing 

pathogen may differ among plant species. Phytotoxins can be host-specific, which means that a 

fungus produces toxins that only affect the principal host and their cultivars, and are referred to as 

host-specific toxins (Mehta and Brogin, 2000). Alternatively, they can be non-host-specific and 

affect a wide range of species (Heiny and Gilchrist, 1991). Stemphylium botryosum produces a 

toxin called stemtoxin (Heiny and Gilchrist, 1991), and some research has been done to study the 

role of this toxin in the context of disease development and its relationship with resistance and 

susceptibility. During the infection of alfalfa plants with S. botryosum a hypersensitive reaction 

was observed in resistant plants, which restricted mycelium growth compared with extensive 

growth on susceptible plants (Borges et al., 1976), leading to the conclusion that the toxin is a 

pathogenicity factor (Mehta and Brogin, 2000). 
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2.2.1 Yield loss due to stemphylium blight in lentil 

The effect of stemphylium blight on lentil seed yield has been reported from other countries, 

but the potential effect in Canadian fields has not been assessed (Morrall, 2003). Reports from 

Bangladesh have described this fungal disease as a major problem that has caused up to 80% yield 

loss in lentil fields (Bakr and Ahmed, 1992; Sinha and Singh, 1993). In yield loss studies, the 

epidemiology of the disease was also described as highly affected by environmental conditions. 

Under optimal conditions and in the cases of susceptible lentil genotypes, yield loss may be 100% 

(Hosen et al., 2009). 

Surveys in the central and northern crop districts of Saskatchewan in 2006 revealed high 

levels of infection of lentil seed with Stemphylium spp. (Morrall, et al. 2006). In more recent years 

stemphylium blight has been observed more frequently in lentil fields in Canada (Mwakutuya and 

Banniza, 2010).  

The economic impact of this disease depends on the potential yield loss through reductions 

in seed quality and quantity harvested from highly infected fields (Banniza et al., 2006). As long 

as the destructive potential of stemphylium blight is unknown, the benefit of control is uncertain 

(Dokken-Bouchard, 2010; Morrall, 2003). 

 

2.2.2 Stemphylium botryosum 

2.2.2.1 Classification, taxonomy and identification 
The genus Stemphylium belongs to the phylum Ascomycota. This phylum contains the class 

Loculoascomycetes, the principal feature of which is a bitunicated ascus. Grouped within the class 

is the large order Pleosporales, which contains numerous families and genera, many of which are 

important plant pathogens (Dugan, 2006; Agrios, 1997). Stemphylium belongs to the Pleosporacea, 

which is characterized by medium to large pseudothecia that do not have a compressed apex, but a 

round ostiole, and usually multi-septate ascospores without germ slits (Dugan, 2006). The 

identification of a fungal pathogen often involves the description of symptoms on the host and the 

morphological characteristics of the isolated pathogen (Punja, 2003). The first description of the 

genus Stemphylium was done by Wallroth in 1833. The species S. botryosum was described based 

on an isolate from asparagus (Asparagus officinalis L.) using the morphology of conidia, 
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conidiophores and mycelia (Wallroth, 1833; Simmons, 1967). More than one hundred years later, 

the description of S. botryosum by morphology as well as morphometry of conidia and 

conidiophores was done by Wilshire (1938). From these initial descriptions based only on 

morphology of the asexual state of the pathogen a common approach was developed for further 

species descriptions. The sexual state of S. botryosum was first, incorrectly, referred to as 

Pleospora herbarum Rabenh. by Wiltshire (1938). In 1838 a description of Macrosporium 

sarcinula, the asexual state of P. sarcinulae (= P. herbarum) was published by Berkeley and the 

conidial description matched that of S. botryosum by Wiltshire (1938). It was only in 1985 that S. 

botryosum was associated with P. tarda, whereas P. herbarum was found to be the sexual state of 

S. herbarum (Simmons, 1985).  

Alternaria and Ulocladium are other genera that have been confused with Stemphylum. 

Simmons (1967) addressed this matter by describing sexual and / or asexual states of Alternaria, 

Ulocladium and Stemphylium with type specimens, which are individuals designated as 

representative of species. The fact that some Stemphylium species lost the ability to reproduce 

sexually has complicated their identification of species (Camara et al., 2002). 

The morphology of conidium and conidiophores is commonly used for the classification of 

species. According to Thomidis and Michailides (2008), conidia of S. botryosum are about 20 to 

29 µm long and 14 to 21 µm wide, with a mean length/width radio of 1.42. Koike et al. (2001) 

reported the dimensions of S. botryosum conidia as 19 to 28 x 14 to 19 µm, with a mean 

length/width radio of 1.43. On the other hand Bayaa and Erksine (1998) gave measurements of 24 

to 40 x 14 to 25 µm length and width, respectively, for conidia of S. botryosum, and described them 

as olive brown, with a muriform and echinulated shape, with three to four septae and as being 

constricted in the middle. Misclassification of pathogenic species within the genus Stemphylium 

has been common since descriptions of morphological characters often overlap (Wang et al., 2010; 

Camera et al., 2002). 

Phylogenetic analysis has developed into a major tool for the study of evolutionary 

reconstruction and species identification. However a phylogenetic analysis that is morphology-

based tends to be limited by the lack of phenotypic characters that most microorganisms display 

compared with molecular phylogenetic analysis, which is more powerful and is becoming a 

common approach in evolutionary reconstruction and identification of species (Sleator, 2011).  
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Molecular phylogenetic analysis helps to describe genetic diversity such as in the case of 

the species S. solani, for which host specialization of isolates from tomato and cotton in Brazil 

were differentiated by the internal transcribed spacer (ITS) (Mehta, 2001). A group of Stemphylium 

spp. including S. botryosum pathogenic on alfalfa segregated into two clusters based on the ITS 

and glyceraldehyde – 3 phosphate dehydrogenase (gpd), indicating that they may represent two 

species, which was not supported by morphological data (Camara et al., 2002). Inderbitzin et al. 

(2009) studied the relationship among sexual and asexual states of Stemphylium spp., and showed 

that in some cases the sexual and its respective asexual state were grouped separately, indicated 

that one or the other had been misclassified.  

The use of type specimens as a reference for comparison is a critical feature in the 

classification and identification of a pathogen. However, some type specimens were described 

more than one hundred years ago and have since been lost, or they are not available for molecular 

analyses. In such cases, designation of an epitype based on the original descriptions is necessary. 

In the last decade, fungal taxonomy has been increasingly based on DNA sequence data, and less 

on morphology or other biological parameters. Crous et al. (2014) recommended the deposition of 

cultures and DNA sequence data of the ex-type linked to holo-, lecto-, neo- or epitype specimens 

into the public database www.GeneraofFungi.org (GoF). 

It has been estimated that only about 8% of the fungal species described are reliably 

supported with molecular data (Crous et al., 2014). Nevertheless, very conserved genic regions 

such as the ITS of the nuclear ribosomal DNA are now used as barcodes for fungi, but other loci 

are also recommended and tested for high resolution in the identification of, or differentiation 

among species, including the genus Stemphylium (Crous et al., 2014; Wang et al., 2010; Inderbitzin 

et al., 2009; Camara et al., 2002).   

2.2.2.2 Biology and life cycle 
The life cycle of S. botryosum on lentil is not well understood. The pathogen possesses a 

wide host range in the Leguminosae, but also in other plant families (Bayaa and Erksine, 1998). 

The first symptoms on lentil plants observed in Canadian fields are small beige spots on leaves and 

flowers (Mwakutuya and Banniza 2010). Similar symptoms are reported from Bangladeshi fields 

where initial symptoms begin with tiny pin-headed light brown spots that increase rapidly in size 

until they cover all of the tissue, turning the foliage dull yellow that gives the plants the blighted 
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appearance. As a result, leaflets drop, branches become bare and finally die (Bayaa and Erskine, 

1998). The fungus can also cause flower abortion and consequently yield loss.  

On spinach, S. botryosum is recognized by the early presence of leaf spots of 2 to 5 mm in 

diameter that are oval or circular. Spots are grey-green on immature leaves, and after the spots 

expand, plants decay and eventually die (Koike et al., 2001). In alfalfa, S. botryosum penetrates via 

stomata three hours after inoculation and forms bulbous sub-stomatal primary hyphae followed by 

intercellular secondary hyphae after 15 to 18 h. Infection spreads rapidly and symptoms become 

obvious. The first conidia appear five days after inoculation (Pierre and Millar, 1965).  

A more complete picture of the life cycle is available for S. vesicarium on Chinese chive 

(Allium fistollum L.). The first stage of the life cycle occurs during the cropping season, when 

conidia are released from leaves with symptoms. Pseudothecia arise at the end of the cropping 

season. During the third stage, the pathogen overwinters in pseudothecia on the leaves. The last 

stage is characterized by the presence of ascospores of Pleospora sp., which form the primary 

source of inoculum for the newly grown A. fistollum crop (Misawa, 2012). Two types of symptoms 

were described, the first one a yellow mottled lesion with a diameter of 0.5 to 4 cm, and the second, 

brown oval lesions of 7 cm in diameter (Misawa and Yasuoda, 2012). 

Environmental conditions have been recognized as a major factor in the development of 

stemphylium blight. For example, in the United States it was demonstrated that two biotypes of S. 

botryosum on alfalfa (Medicago sativa) were present. One biotype develops symptoms at 

temperatures of about 16 to 20°C (cool temperature biotype), whereas a second biotype develops 

symptoms at a temperature range of 23 to 27°C (warm temperature biotype) (Heiny and Gilchrist, 

1991). Infection by S. botryosum on lentil can occur during a wide range of temperature from 5 to 

30oC, but optimal infection was observed at temperatures of 25 to 30oC (Mwakutuya, 2006). 

Humidity is another important factor as Hernandez-Perez and du Toit (2006) reported that leaf 

spots on spinach caused by S. botryosum occurred more frequently when conditions were cool and 

moist. Intermittent foggy conditions with temperature from 25 to 27°C are favourable conditions 

for the development of stemphylium blight in lentil (Chowdhury et al., 1997). Similarly, 

Mwakutuya (2006) observed that a leaf wetness period exceeding 48 h at optimal temperatures of 

25 to 30oC was conducive to infection of lentil. Disease severity of alfalfa plants can be influenced 

by light exposure pre- and post-inoculation with the cool-temperature biotype of S. botryosum. 
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Alfalfa plants with a 12 h pre-inoculation light exposure showed higher disease development than 

those with a 12 h dark expose before inoculation, and inoculated plants exposed to a 12 h light 

period after inoculation had higher disease severity than plants inoculated before a 12 h dark period. 

Plants incubated under continuous light after inoculation developed no symptoms, so light periods 

before and after inoculation followed by dark periods were important for disease development 

(Cowling and Gilchrist, 1982). 

In Bangladesh S. botryosum was detected on lentil debris during the non-crop season where 

it multiplied and from where it easily spread by wind (Huq and Khan, 2008). The pathogen in 

Canada was reported as seed- and stubble-borne, and as a saprophyte (Morrall, 2003). 

2.2.3 Control options and agronomic management 
Compared to many crops, lentil is a low input crop, in particular in developing countries, 

so it is desirable to develop low cost agronomic and disease management methods. For this reason, 

recent studies have focused on the biology of the pathogen and its interaction with the host plant 

lentil. Moreover, the development of resistant varieties has been recognized as one feasible option 

(Bayaa et al., 1995). However, chemical control is the most common option to control lentil 

diseases.  

In a Bangladeshi study on stemphylium blight control, the four foliar fungicides iprodione, 

sulfur, propineb, and mancozeb were applied three times at seven-day intervals after the first visible 

stemphylium blight symptoms appeared on lentil. All fungicides had positive effects on disease 

control. However treatments with iprodione had the highest seed yield followed by those sprayed 

with propineb and mancozeb (Bakr and Ahmed, 1992). In Bangladesh the application of iprodione 

at intervals of seven days from the initial symptoms is recommended. Additional cultural practices, 

such as delaying sowing are also recommended, although a delay in sowing can also have a 

negative impact on lentil seed yield (Bayaa and Erskine, 1998).  

Another example is the control of brown spot of pear caused by S. vesicarium (Wallr.) in 

Europe. By using the preventive fungicides carbamates and carboximides at seven-day intervals 

the disease can be controlled successfully, however multiple applications are required, which 

increase production costs and has negative environmental effects (Llorente et al., 2000).  

In Canadian fields, foliar fungicides used to control other fungal diseases such as ascochyta 

blight or anthracnose can also reduce the severity of stemphylium blight (Morrall, 2003). The 
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efficacy of the fungicides chlorothalonil, pyraclostrobin, azoxystrobin, and boscalid registered in 

Saskatchewan for disease control in lentil (Government of Saskatchewan, 2016) was already 

assessed for the control of stemphylium blight in 2005. This revealed that the fungicides boscalid 

followed by azoxystrobin, were more effective than chlorothalonil, or pyraclostrobin (Banniza et 

al., 2006). However, there are no fungicides registered in Canada to control stemphylium blight on 

lentil (Dokken-Bouchard, 2010; Government of Saskatchewan, 2016). 

Other options to avoid losses due to diseases are based on the development of new lentil 

cultivars with morphological features that may influence resistance or disease escape. For example, 

an analysis of aerial plant structures of susceptible and resistant cultivars of lentil demonstrated 

significant differences in the thickness of the cuticle with more than three times thicker for resistant 

cultivars (0.00092 ± 0.00077 mm) compared to susceptible cultivars (0.00028 ± 0.00094 mm) 

(Chowdhury et al., 1997). Also, the number of stomata in resistant cultivars (20 ± 3.42) was less 

compared with that of the susceptible cultivar (31 ± 2.81). Fewer stomata and greater thickness of 

the cuticle were thought to help reduce fungal penetration.  

Genetic resistance is the most economical, efficient, and environmentally acceptable 

options in pest control (Bailey, 2003). The exploration and exploitation of the different lentil 

genepools may reveal a wide range of resistance genes that can be used for the development of 

resistant cultivars to specific diseases (Turkington, 2003; Bayaa et al., 1995; Ladizinsky, 1979). 

Resistance to stemphylium blight was observed by Podder (2012) in the wild species L. lamottei 

and L. ervoides after screening several accessions of each species.  
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3. STEMPHYLIUM BLIGHT INDUCED YIELD LOSS IN LENTIL  

3.1 Introduction 
Lens culinaris Medikus is the cultivated species of lentil that is widely grown as a crop 

because of its nutritional value and the low cost of production (Muehlbauer, 2011; Yadav et al., 

2007). Well adapted to cold and dry conditions, lentil cultivation has spread from its origin in the 

Middle East to America in the last decades (Muehlbauer, 2011; Koike et al. 2001). 

Lentil has become one of the most important crops in Canada since its introduction in the 

1970’s (Morrall, 2003). It is the fifth largest crop produced in Canada, and Canada ranks first as 

an international lentil exporter (FAOSTAT3, 2015). Moreover, the province of Saskatchewan 

produces 98% of the exported lentil (Saskatchewan Ministry of Agriculture, 2015), which makes 

Saskatchewan the dominant province in lentil production (Canadian Grain Commission, 2014).  

Similar to other crops, lentil production is constrained by biotic and abiotic factors. 

Environmental conditions are one of the major factors that affect lentil production since lentil is 

highly influenced by temperatures and precipitation (Tewari et al., 2012; Saxena, 2009). Lentil 

genotypes adapted to warm conditions develop reproductive stages earlier than those adapted to 

cold weather (Saskatchewan Ministry of Agriculture. 2010). Therefore, the potential for seed yield 

is the result of a combination of genotypes and environment components (Hanlan et al., 2006). 

Biotic stresses caused by diseases such as stemphylium blight can also have negative effects 

on seed yield (Banniza et al., 2006; Rahman et al., 2010; Muehlbauer, 2011). In addition to 

reduction in the seed yield of lentil, seed quality can also deteriorate due to diseases, both of which 

have direct negative effects on the value of the lentil crop (Bailey, 2003).  

More than a dozen fungal pathogens of lentil have been reported around the world, of which 

Ascochyta lentis Vass., has been identified as important in Canada and South Asia, Botrytis cinerea 

Pers. ex Fr. and Uromyces viciae – fabae Schoret. are widely distributed, and Stemphylium 

botryosum Wallroth is a major pathogen on the Indian Subcontinent (Bayaa and Erksine, 1998). 

The latter, is well described as one of the major factors in seed yield reductions in Bangladesh 
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where it was reported to cause up to 100% yield loss (Hosen et al., 2009; Bayaa and Erksine, 1998). 

Likewise stemphylium blight has also been observed in Canadian lentil fields in recent years 

(Mwakutuya and Banniza, 2010; Morrall, et al. 2006), but investigation of the pathogen in Canada 

has been limited to date (Mwakutuya and Banniza, 2010). 

Research into the effects of several factors involved in the infection process and disease 

development of stemphylium blight, such as wetness period, susceptible plant age, optimal 

environmental conditions, optimal conidial concentration for artificial inoculations, disease 

severity and efficiency of fungicides on lentil plants infected artificially under controlled conditions 

have been conducted in Canada (Banniza et al. 2006). However, the effect of this disease on lentil 

plant development has not been studied under Canadian field conditions (Morrall, 2003; Banniza 

et al., 2006).  

Stemphylium botryosum warrants further research because this lentil pathogen is common 

in lentil fields in Saskatchewan. The objective of this study was to assess the effect of stemphylium 

blight infection at the seedling, early-flowering, mid-flowering and podding stages on disease 

severity, seed yield and seed quality. 

 

3.2 Materials and Methods 

3.2.1 Plant material  
The Canadian lentil cultivar CDC Robin was used for this project, originating from supplies 

of the Crop Development Centre (CDC) of the University of Saskatchewan from production in 

Saskatchewan in 2002. This variety was developed at the CDC from CDC Matador / Eston / ESOR 

– 3 – 6 – 1 in 1992 and was registered in 1999. The line ESOR 3 – 6 – 1 is derived from a cross of 

Eston and a line of Lens orientalis, and Matador is derived from a cross of Indianhead and Eston. 

Partial resistance to Ascochyta lentis and to Colletotrichum lentis Damm was transferred from 

Indianhead to CDC Robin (Chongo et al., 1999; Buchwaldt et al., 1999). CDC Robin has a brown 

seed coat color and red cotyledons and fits into the small red market class of lentil. It was bred for 

lentil production in western Canada as a high yielding variety (Vandenberg et al., 2002). 
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3.2.2 Determination of the optimal conidial concentration under greenhouse conditions 
 A preliminary experiment was carried out to determine the optimal conidial concentration 

for field inoculations. Using a randomized complete block design, conidial concentrations of 1 x 

103, 1 x 104, and 1 x 105 conidia mL-1 were assessed. The experiment was established in the 

greenhouse of the Department of Plant Sciences, University of Saskatchewan at Saskatoon during 

May and June of 2013. The experiment was repeated once. 

Isolate SB19 of Stemphylium botryosum from the culture collection of the Pulse Crop 

Pathology Research Group of the CDC was selected to be used as inoculum for all experiments in 

this project. It was isolated from infected lentil plant material collected in a field near Bladworth, 

Saskatchewan, in 2002. This isolate had high spore production and high virulence on plants of 

lentil cultivar CDC Milestone when inoculated under laboratory conditions (Mwakutuya and 

Banniza, 2010; Podder, 2012).  

Conidial suspensions were prepared with conidia previously produced in 2012 by the Pulse 

Crop Pathology Research Group of the CDC (Klassen et al., 2012). Conidial suspensions were 

prepared by adding 1 g of conidia to 1000 mL of distilled water in continuous agitation for at least 

30 min. Dilutions to achieve the required spore concentrations were determined by counting four 

preparations of the suspensions on a Neubauer hemocytometer and diluting to obtain the desired 

conidial concentrations of 1 x 103, 1 x 104, and 1 x 105 conidia mL-1. Before inoculation two drops 

of Tween® 20 surfactant per 1000 mL of suspension were added.  

Pots of 10 x 10 cm were seeded with CDC Robin at a density of six seeds per pot into 

Sunshine® No. 4 mix mixed with perlite (3:1). Four replicate pots per treatment were planted. After 

seedling emergence, plants were fertilized with fertilizer solution prepared with PlantProd® (20–

20–20 plus micronutrients) once a week.  

Three weeks after planting, plants were thinned from six to four plants per pot and were 

inoculated by spraying each conidial suspension with an air brush until run off using approximately 

3 mL of conidial suspension per plant. Plants were incubated for 48 h in high humidity in a misting 

chamber before being returned to the greenhouse bench. Lentil plants were grown in the 

greenhouse with misting irrigation at 22°C during the day and 20°C at night, with a photoperiod of 

16 h under natural light supplemented with 400 watts high pressure sodium lamps at light intensity 

of 300 - 1100 μmol m-2 s-1.   
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3.2.3 Inoculum production for field experiments 
A stock of about 40 g of S. botryosum SB19 conidia with above 90% spore germination 

was available from previous production to use for the first experiment in 2013. However, it was 

necessary to continue with the mass production of conidia to have enough inoculum for the second 

field experiment in 2014. The inoculum was produced from 2013 to 2014 at the Crop Science Field 

Laboratory facility of the CDC following the procedures developed by Klassen et al. (2012) with 

further adaptation (Appendix 1). Conidial suspension for field experiments were prepared 

following the same procedures as described in section 3.2.2 and each field plot was inoculated with 

1.5 L of 1 x103 conidia mL-1 of the conidial suspension. 

  

3.2.4 Field experiments 
Three field experiments were conducted to estimate lentil seed yield loss in response to 

stemphylium blight infection at different growth stages using a randomized complete block design 

with two factors. In 2013 and 2014, experiments were established at the Seed Farm at Saskatoon 

(52o 08’ 08.5” N, 106o 37’ 13.5” W), and in 2014 a second experiment at the Preston Avenue 

experimental site (52o 07’ 35.5” N, 106o 37’ 19.6” W) was added. 

The first experimental factor was the timing of inoculation at four growth stages: seedling, 

early-flowering, mid-flowering and the podding stages (Table 3.1). An uninoculated control was 

also included. A second experimental factor consisting of low tunnels was added to limit exposure 

to natural infection by S. botryosum, and to allow for inoculation at specific growth stages of lentil 

plants. Low tunnels also created a microclimate conducive to infection. To estimate the effect of 

cover materials (low tunnels) on lentil development and yield, all inoculation treatments were also 

applied to non-covered treatments. 
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Table 3.1: Inoculation dates for the four lentil growth stages in field experiments at the Seed 
Farm 2013 and 2014, and at the Preston Avenue site in 2014. 

Lentil 

growth stages 

2013 2014 

Seed Farm Seed Farm Preston field 

Seedling 12-June (26 d.a.s.) 12-June (30 d.a.s.) 12-June (30 d.a.s.) 

Early-flowering 02-July (46 d.a.s.) 02-July (50 d.a.s.) 02-July (50 d.a.s.) 

Mid-flowering 18-July (62 d.a.s.) 17-July (65 d.a.s.) 17-July (65 d.a.s.) 

Podding 02-August (77 d.a.s.) 06-August (85 d.a.s.) 06-August (85 d.a.s.) 

d.a.s: Days after seeding; Seedling: 12 nodes; Early-flowering: 15 nodes; Mid-flowering: 24 
nodes, from 20 to 24 nodes with new flowers and from 13 to 16 nodes with pods in the filling 
process; Podding: 24 nodes and 80% pods in the filling process. 
 

In 2013, the two cover materials green polyethylene and Novagryl® were included. 

Novagryl® is a highly stretchable three layer fleece made of polypropylene. Novagryl® filters out 

20% of incoming light. It is supplied in rolls of 1.9 m width (Crop Solutions Ltd, 2007). Perforated 

green polyethylene filters out 41% of incoming light, and also induces cool conditions (Waterer et 

al., 2011) (Fig. 3.1).  

 

 

Figure 3.1: Low tunnels made with Novagryl® (front left) and green polyethylene (front right) 
materials in the field experiment at the Seed Farm in 2013. 
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Although both materials were similarly successful in creating conducive infection 

conditions in 2013, the plants under green polyethylene low tunnels developed higher disease 

severity and were less severely infested by aphids. Therefore, only green polyethylene was used in 

experiments in 2014.  
 

3.2.4.1 Experimental procedures  
In all experiments plot size was approximately 4 x 1 m (4 m2) with three rows at 30 cm 

spacing. Pre-seeding and post-seeding chemicals applied in the field and the agronomic 

management procedures are summarized in Appendix 2. Field plots were inoculated when plants 

had reached the respective growth stage by spraying 1.5 L conidial suspension of 1 x 103 conidia 

mL-1 of isolate SB19 per plot with a 3.8 L Gilmore® hand sprayer, which was equivalent to run off. 

Low tunnels were established immediately after inoculation, which was 25 and 29 days 

after seeding in 2013 and 2014, respectively. Four supportive wire hoops per plot were used to 

create low tunnels in plots treated as covered, and each cover material was tightened at ground 

level with six sand bags per plot to facilitate easy opening of tunnels for inoculation and 

assessment. The tunnel material was temporarily removed once a week at the time of disease 

assessment and when an inoculation took place. Plots were covered again right after inoculation. 

All plots were then exposed to overhead misting irrigation for 1 h to ensure high humidity for 

infection.  

 

3.2.4.2 Data collection and analyses 
Stemphylium blight severity for the preliminary experiment under greenhouse conditions 

was recorded at seven days after inoculation followed by three successive ratings at three-day 

intervals. A semi-quantitative scale developed for stemphylium blight assessment by Banniza et al. 

(2006) was used (Table 3.2). 

Severity of stemphylium blight in the field experiments was assessed prior to each 

inoculation in all treatments (except for the first rating in 2013) on a weekly basis in all field 

experiments. A quantitative scale ranging from 0 to 10 with 10% increments was used (Table 3.3)  
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Table 3.2: Semi-quantitative rating scale to assess stemphylium blight on lentil plants under 
greenhouse conditions 

Scale Symptoms 

0 healthy plants 

1 few tiny lesions 

2 a few chlorotic lesions 

3 expanding lesions on leaves, onset of leaf drop 

4 1/5th of nodes affected by lesions and leaf drop 

5 2/5th of nodes affected 

6 3/5th of nodes affected 

7 4/5th of nodes affected 

8 all leaves dried up 

9 all leaves dried up but stem green 

10 plant completely dead 

 

 Table 3.3: Quantitative rating scale to assess stemphylium blight severity of each plant in field 
experiments. 

Scale  Percentage of plant damaged 
0 0 
1 1  - 10 % 
2 11 – 20 % 
3 21 – 30 % 
4 31 – 40 % 
5 41 – 50 % 
6 51 – 60 % 
7 61 – 70 % 
8 71 – 80 % 
9 81 – 90 % 
10 91 – 100 % 

 

Five arbitrarily selected plants were rated per treatment. Eight ratings were done in 2013 

and 10 in 2014 (Table 3.4). Quantitative data were transformed to percentage disease severity using 

the class mid points. The average rating per treatment was used to calculate the Area Under the 
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Disease Progress Curve (AUDPC) as a measure of repeated quantitative disease ratings (Shaner 

and Finney, 1977): 

AUDPC=∑n
i=1[(Y i+1+Yi) /2]* [X i+1-Xi] 

Where Yi is disease severity in percentage at the ith observation, Xi is number of days after 

inoculation at the ith observation, and n is the total number of observations (Shaner and Finney, 

1977). 

Table 3.4: Dates of disease severity assessments in field experiments at the Seed Farm in 2013 
and 2014, and the Preston Avenue site in 2014. 

 

Ratings  

2013 2014 

Seed Farm Seed Farm Preston field 

1st 26-Jun 11-June 11-June 

2nd 02-Jul 18-June 18-June 

3rd 10-Jul 25-June 25-June 

4th 17-Jul 01-July 01-July 

5th 23-Jul 9-July 9-July 

6th 31-Jul 16-July 16-July 

7th 08-Aug 22-July 22-July 

8th 13-Aug 30-July 30-July 

9th --- 05-August 05-August 

10th --- 11-August 11-August 

 

 

Seed harvest was performed with a combine for each plot / treatment. Harvested seeds were 

dried and weighed. Lentil seed yield was calculated based on the harvested plot area of 4 m2. 

Randomly selected seeds from the original sample recovered from each plot / treatment were 

assessed for Thousand Seed Weight (TSW), percent seed infected by S. botryosum, percent seed 

staining, and seed size (diameter and thickness). TSW per plot / treatment was estimated by 

weighing 200 seeds and multiplying by five. The percentage of stained (deviation from the 
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characteristic mottling of CDC Robin seeds) or wrinkled seeds were visually estimated from 100 

randomly selected seeds (Canadian Grain Commission, 2014). 

To determine the percentage of seed infection with S. botryosum, 100 randomly selected 

seeds from each original sample were placed into ten Petri dishes of 90 mm diameter filled with 

potato dextrose agar (PDA) medium. The Petri dishes were incubated under continuous light at 

25oC, and the assessments were made after seven days of incubation by counting the number of 

infected seeds. Then glass slides of fungal structures were prepared to confirm the identity of the 

pathogen based on morphology by microscopy (International Seed Testing Association, 2014). 

For seed sizing, 250 g of seeds from the original sample were passed through a set of five 

round-holed screens with diameters ranging from 5.16 mm (13/64”) to 3.57 mm (9/64”), and six 

slotted screens with holes from 2.87 mm (7.5/64”) to 1.98 mm (5/64”) in increments of 0.2 mm 

(1/64”) to estimate diameter and thickness, respectively. Percentage of seeds retained in each 

screen was used to calculate average seed size as follows (Fedoruk, 2013):  

Seed size = Σ (% of seed on screen * screen hole size (mm)) / 100 

 

Data were tested for normality of residuals with the Shapiro-Wilk test. In some cases it was 

necessary to transform data to meet the assumptions of ANOVA. Homogeneity of variances was 

tested with the Levene’s test. Heterogeneous variances were modeled with the repeated statement 

in the mixed model procedure. All statistical analyses were carried out with the Statistical Analysis 

Software (SAS, Institute Inc.2013). Repeated measures analyses of data from the preliminary 

experiment under greenhouse conditions were conducted with the mixed model procedure. 

Conidial concentrations and time (measured in days after inoculation) were treated as fixed factors, 

whereas blocks and repeats were considered random factors. Time was considered the repeated 

measure. 

For field experiments, trends in individual experiments were similar, so only combined 

results for the three site-years are presented. Data collected from the low tunnels covered with 

Novagryl® for 2013 were excluded for this purpose, but results of individual experiments (including 

Novagryl®) are presented in Appendix 4. 

For combined analyses of field data, site-years and blocks were treated as random factors 

and the inoculation timings and tunnels were considered fixed factors. As an initial step, covered 
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(low tunnels) and non-covered plant responses were compared by simple linear contrasts. Then the 

efficacy of inoculations in low tunnels was determined with simple linear contrasts between the 

uninoculated control and the inoculation treatments in tunnels. Treatment means among covered 

plots were also compared with Fisher’s least significant difference or simple linear contrasts. 

 

3.3 Results  

3.3.1 Greenhouse experiments 
Repeated measures analysis indicated a very highly significant effect of conidial 

concentration, time and their interaction on stemphylium blight severity (P < 0.0001). For all 

concentrations, stemphylium blight severity increased with time. Disease severity increased 

incrementally with higher conidial concentrations, and reached 7.4 on the rating scale after 

inoculation with 1 x 105compared to 3.7 after inoculation with 1 x 103 conidia mL-1 (Fig. 3.2).  

 

 

Figure 3.2: Left: Stemphylium blight severity at seven, ten, thirteen, and sixteen days after 
inoculation on lentil cultivar CDC Robin inoculated with three different conidial concentrations of 
Stemphylium botryosum. Right: Plants of CDC Robin inoculated with Stemphylium botryosum 
under controlled conditions. From left to right: Control, 1 x 103, 1 x 104, 1 x 105 conidia mL-1  
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3.3.2 Field experiments  

3.3.2.1 Stemphylium blight severity and yield loss  
Rainfall from May to August in 2013 and 2014 reached 180 and 222 mm, respectively. The 

maximum temperatures in the crop season 2013 and 2014 were 32oC and 31oC, respectively, and 

the minimum temperature in both years was -5oC (Environment Canada, 2015).  

Stemphylium blight was observed in treatments in low tunnels and in the non-covered 

treatments, including the control treatments at both sites and in both years. At the Seed Farm in 

2013, plants under low tunnels had on average 53% stemphylium blight severity (mean of all 

treatments at last rating date) compared to 42% in the non-covered treatments. Similar effects were 

observed in experiments in 2014, where disease levels of 72% and 83% developed on plants in low 

tunnels compared to 60% and 61% disease severity on plants in non-covered treatments at the Seed 

Farm and at the Preston Avenue site, respectively. 

Stemphylium blight was relatively uniform among non-covered treatments as expected due 

to infection through natural inoculum. Disease in control treatments in low tunnels was likely 

caused by natural infection during the weekly assessment of disease severity when the cover 

material was removed for disease assessments. Furthermore, low tunnel materials are permeable to 

air and possibly conidia. To assess the effect of tunnels on lentil plants and disease, their 

development in tunnels and in non-covered treatments was compared. The effect of stemphylium 

blight infection at different growth stages was then evaluated in detail for plants grown in low 

tunnels only where infection timing could be controlled to a certain degree.  

3.3.2.2 Plant responses in low tunnels vs. non-covered treatments  
Analysis of AUDPC data including the non-covered treatments revealed significant effects 

of inoculation timing (P = 0.0001) and cover treatments (P = 0.0001). The interaction of cover 

treatment and inoculation timing was not significant (P = 0.0507). Contrast analysis between 

covered and non-covered treatments revealed a highly significant difference (P = 0.0001). Data 

collected from covered treatments had an average of 69% higher cumulative disease compared to 

non-covered treatments. 

The analysis of seed yield data including the non-covered treatments revealed non-

significant effects of inoculation timing and the interaction between cover treatment and 
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inoculation timing (P = 0.9346). Covering treatments had significant effects on seed yield (P = 

0.0001) and the linear contrast between covered and non-covered treatments revealed a highly 

significant difference in seed yield (P = 0.0001). Seed yield was 43% lower in tunnels compared 

to non-covered treatments. 

Analysis of thousand seed weight (TSW) data including the non-covered treatments 

revealed that inoculation timing (P = 0.3171) and its interaction with covered treatments (P = 

0.381) had no effect on TSW, whereas the covered treatment had a significant effect (P = 0.0021). 

Contrast analysis revealed a highly significant difference between covered and non-covered 

treatments (P = 0.0021) with on average a 4% reduction in TSW in low tunnels compared to non-

covered treatments. 

The percentage of seed infected with Stemphylium spp. was neither affected by inoculation 

timing (P = 0.178) nor by the covering treatment (P = 0.0831) when analyzing data from covered 

and non-covered treatments. Inoculation timing had an effect on seed staining (P = 0.0001), but 

not the covered treatments or the interaction (P = 0.0915). Inoculation timing or its interaction with 

the cover treatments had no effect on seed diameter (P = 0.8668) or seed thickness (P = 0.7861), 

yet the cover treatments had a highly significant effect on diameter (P = 0.0001) and thickness (P 

= 0.0045). Linear contrast analysis revealed that tunnels reduced seed diameter by 3% (P = 0.0001) 

and seed thickness by 3 to 5% (P = 0.0045) compared with non-covered treatment. In summary, 

inoculation timing had no effect on plants in non-covered treatments, but lentil plants grown in 

tunnels had higher disease levels, lower seed yields, lower TSW, higher percentage of seed infected 

with Stemphylium spp. and higher percentage of seed staining, which confirmed that low tunnels 

were effective in creating a more conducive environment for infection and that inoculations were 

successful. In addition to the impact of higher disease levels, cover materials themselves probably 

had a negative effect on yield. However, since yield loss was assessed in relative terms by 

comparing inoculated with uninoculated covered control treatments, further analyses to determine 

the effect of infection at different growth stages on stemphylium blight severity (AUDPC), seed 

yield and seed quality were conducted on data from treatments under low tunnels only. 

3.3.2.3 Disease development in low tunnels in field experiments 
The analysis of AUDPC data collected from green polyethylene low tunnels revealed a 

highly significant effect of inoculation timing (P = 0.0001). The effect of inoculation timing on 
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AUDPC was confirmed by simple linear contrast analyses between the uninoculated control 

treatments versus the inoculated treatments. AUDPC in control treatments were significantly lower 

compared to treatments inoculated at various growth stages. Means comparison revealed that the 

level of stemphylium blight on plants inoculated at the seedling stage was higher than on 

uninoculated plants or plants inoculated at later growth stages. Cumulative stemphylium blight 

severity of the treatments inoculated at the seedling stage was increased by 42% compared to the 

uninoculated treatments, and by on average 13% compared to treatments inoculated later, which 

developed similar levels of disease (Fig. 3.3). 

 

 

Figure 3.3: Area under the disease progress curve (AUDPC) of stemphylium blight on lentil 
cultivar CDC Robin grown under green polyethylene low tunnels in three field experiments at 
Saskatoon in 2013 and 2014. Treatments were inoculated with Stemphylium botryosum field isolate 
SB19 at 1 x 103 conidia mL-1 at four growth stages. Separation of means by Fisher’s LSD (P < 
0.05) represented by different letters above bars.  
 
 

3.3.2.4 Lentil seed yields harvested from low tunnels 
Seed yields ranged from 1642 to 1808 kg / ha (Fig. 3.4). There was no effect of 

inoculation timing on seed yields (P = 0.7687).   
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Figure 3.4: Seed yield of lentil cultivar CDC Robin grown in green polyethylene low tunnels in 
three field experiments at Saskatoon in 2013 and 2014 and inoculated with Stemphylium botryosum 
field isolate SB19 at 1 x 103 conidia mL-1 at four growth stages.  

 

 

3.3.2.5 Thousand seed weight of seed harvested from low tunnels  
The TSW ranged from 25.4 to 26.4 g (Fig. 3.5) and analysis revealed a non-significant 

effect of inoculation timing (P = 0.1762). Based on observations for disease development, linear 

contrast analyses were also conducted to compare the effects of each inoculation timing with that 

of uninoculated control treatments for TSW, revealing that TSW of the early-flower inoculation 

treatment was lower than that of the control treatment (P = 0.035).  
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Figure 3.5: Weight of 1000 seeds (TSW) of lentil cultivar CDC Robin grown in low tunnels in 
three field experiments at Saskatoon in 2013 and 2014 and inoculated with Stemphylium botryosum 
field isolate SB19 at 1 x 103 conidia mL-1 at four growth stages.  * indicates the treatment is 
significantly different from the control based on simple linear contrasts.  

 

3.3.2.6 Stemphylium infected lentil seed grown under low tunnels  
The incidence of seed infected with Stemphylium spp. ranged from 0.7 to 3.4% (Fig. 3.6). 

Data analysis revealed an effect of inoculation timing on the percentage of seed infected (P = 

0.0025). Linear contrasts analyses between uninoculated and inoculated treatments were 

significant (P ≤ 0.003).  

Means comparisons indicated that the level of seed infected with Stemphylium spp. in the 

treatments inoculated at the seedling, early-flower, mid-flower stages were similar and higher than 

those for seed from treatments inoculated at the podding stage and from the control. Infection levels 

were on average 2.8 times higher in those treatments (Fig. 3.6). 
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Figure 3.6: Percentage of seed infected with Stemphylium spp. of lentil cultivar CDC Robin grown 
in green polyethylene low tunnels in three field experiments at Saskatoon in 2013 and 2014 and 
inoculated with Stemphylium botryosum field isolate SB19 at 1 x 103 conidia mL-1 at four growth 
stages. Separation of means by Fisher’s LSD (P < 0.05) represented by different letters above bars. 
  

3.3.2.7 Percentage staining of seed harvested from low tunnels 
Seed staining ranged from 6 to 13% (Fig. 3.7) and analysis of data revealed that inoculation 

timing had no effect (P = 0.2267). However, linear contrast analyses revealed differences between 

the uninoculated control treatments versus inoculated treatments (P = 0.0013).  
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Figure 3.7: Percentage of seed staining on seeds harvested at Saskatoon from lentil cultivar CDC 
Robin grown in green polyethylene low tunnels in three field experiments at Saskatoon in 2013 
and 2014 and inoculated with Stemphylium botryosum field isolate SB19 at 1 x 103 conidia mL-1 
at four growth stages. * indicates treatments are significantly different from the control based on 
simple linear contrasts. 

 

3.3.2.8 Seed diameter and thickness  
Seed diameter ranged from 3.8 to 3.9 mm and seed thickness from 2.1 to 2.2 mm (Fig. 3.8). 

Data revealed an effect of inoculation timing on diameter (P = 0.04), but not on thickness (P = 

0.72). Further exploration of seed diameter through linear contrast analysis revealed that seed from 

treatments inoculated at seedling, early- and mid-flower growth stages were smaller than the 

uninoculated control and podding stage.  
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Figure 3.8: Seed diameter (left) and thickness (right) of lentil cultivar CDC Robin grown in green 
polyethylene low tunnels in three field experiments at Saskatoon in 2013 and 2014. Treatments 
were inoculated with Stemphylium botryosum field isolate SB19 at 1 x 103 conidia mL-1 at four 
growth stages. * indicates treatments are significant different from the control based on simple 
linear contrasts. 
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3.4 Discussion 
The greenhouse experiment showed increasing disease severity on lentil plants as they were 

inoculated with more conidia. The lowest conidial concentration (1 x 103 conidia mL-1) was 

selected for field inoculations because higher conidial concentrations may have led to premature 

plant death with the result that seed yield and quality effects could not have been assessed. 

Assessment of disease symptom of cv. CDC Robin lentil in field experiments indicated that 

infection was due to S. botryosum isolate SB19 and natural inoculum of Stemphylium spp. This 

occurred even on plants in low tunnels, where stemphylium blight symptoms were detected in the 

uninoculated control treatments. However, lentil plants had higher disease severity in low tunnels 

compared to non-covered plants, and showed responses to inoculation timings, which confirmed 

the effectiveness of artificial inoculation under low tunnels. Stemphylium blight levels from 53 to 

83% in low tunnels were higher compared with 25 to 62% reported by Podder (2012) for plants 

grown under such conditions.  

The optimal temperature for development of stemphylium blight on lentil plants was 

reported as 25 to 30oC by Mwakutuya and Banniza (2010). This is similar to the temperatures 

recorded in low tunnels in this study. Longer duration of temperatures above 25oC, as well as longer 

periods of high relative humidity compared with the non-covered treatments were observed in low 

tunnels (Appendix 3). 

Describing the specific plant stage at the time of inoculation helped to relate the effect of 

the disease to specific growth stages (Table 3.2). Environmental conditions as well as light 

conditions varied between years, therefore description of plants in terms of number of nodes, 

percentage of flowering plants and percentage of pods filled throughout the field was more 

informative compared with plant age expressed in number of days after seeding only.  

Assessing AUDPC captures physiological and environmental effects that have direct 

influence on final disease severity (Shaner and Finney, 1977). It is considered an indirect 

measurement of pathogen population (Brooks, 2000) and is an easy method to summarize the 

development of a polycyclic disease such as stemphylium blight.  

The differences in disease severity observed in response to inoculation timing revealed that 

plant age at the time of infection has an effect on disease development over time, which was similar 

to earlier observations in the experiments under controlled conditions in the greenhouse (Banniza 
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et al., 2006; Kumar, 2007). Lentil plants infected with S. botryosum as seedlings (26 days after 

seeding) are likely to develop higher disease severity compared with plants inoculated at early-

flowering, mid-flowering and at the podding stage. Inoculation at the podding stage occurred one 

week before plants were desiccated in all three experiments, with the result that only one disease 

assessment was made after podding inoculation. This late inoculation may therefore have been too 

late to determine its effect on stemphylium blight development as compared with the other 

inoculation timings using AUDPC.  

The cumulative disease level observed in the uninoculated control treatments suggested that 

the field was exposed to background inoculum that likely infected all covered and non-covered 

treatments before and after artificial inoculation. Therefore, the differences between the 

uninoculated control and the inoculation treatments may have been smaller than would have been 

the case if the uninoculated control had been disease-free. Stemphylium blight as a polycyclic 

disease produces several generations of conidia that easily may have moved by wind and passed 

through the holes in the cover material increasing the level of infection and reducing the amount 

of disease-free foliage. This likely affected treatments inoculated in the later stages more so than 

those inoculated at the seedling or early flowering stages, as the impact of inoculum was reduced 

by the higher levels of diseased tissue at later growth stages. Indeed, averaged across all three 

experiments, stemphylium blight severity in uninoculated, covered control treatments increased 

from just over 1% at the first assessment date to 19% at the final assessment date.   

In Saskatoon in 2013, seed yields were marginally reduced in treatments inoculated at the 

early flowering stage compared to the uninoculated control, however analysis of combined yield 

data revealed that inoculation timing had no effect on yield compared with the control. Findings 

here are in contrast to the strong negative relationship between stemphylium blight and seed yield 

described by Bakr and Ahmed (1992), Hosen et al. (2009) and Rahman et al. (2010).  Sustaining 

seed yields on diseased plants may have been the result of intermediate levels of resistance of CDC 

Robin (Banniza et al., 2006). More likely, yield differences between the uninoculated control and 

inoculation treatments were diminished due to the effect of background inoculum that resulted 

because the uninoculated control treatments were not disease-free as mentioned before for 

AUDPC.  
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The cultivar description of CDC Robin lists a TSW of 29 g under field conditions 

(Vandenberg et al., 2002), and was similar to the 30 g per 1000 seeds obtained in field experiments 

here in low tunnels and non-covered treatments. Overall, inoculation timing did not affect TSW of 

CDC Robin. However, simple linear contrast analyses revealed that TSW was reduced when lentil 

plants were infected at the seedling, early- and mid-flowering stages compared with the 

uninoculated control treatments in the experiment at the Seed Farm in 2014 (Appendix A4.4.3). 

Nevertheless this could not be confirmed in the other two field experiments.  

High levels of Stemphylium spp. seed infection in treatments inoculated with S. botryosum 

compared with the uninoculated treatments were observed, and inoculations at the early-flowering 

stage resulted in the highest infection level. The level of seed infection negatively affected seed 

quality. According to the guidelines for seed-borne diseases of pulse crops (Government of 

Saskatchewan, 2016), the importance of seed quality is dependent on the final purpose of the seeds 

produced. If harvested seeds will be used for crop production then features such as high 

germination, and low levels of seed-borne diseases close to zero are recommended. If the seeds are 

designated for consumption, the size, color and shape of lentil seeds are the most important 

features. According to the official grain grading guide, lentils have to meet commercial 

specifications for grading factors such as colour, seed damage, stained seed, wrinkled seed, as well 

as seed infection with seed-borne pathogens (Canadian Grain Commission, 2014).  

The amount of seed coat staining in the red lentil varieties does not apply for marketing 

purposes (Canadian Grain Commission, 2014) since red lentils are mostly decorticated before sale. 

However, the level of seed staining in the seed harvested from inoculated treatments compared 

with the uninoculated control treatments was significant based on contrast analysis, hence for other 

lentil classes seed staining due to stemphylium blight could result in downgrading. Therefore, 

irrespective of whether lentil seeds are used for planting or consumption, export or domestic use, 

a reduction in seed quality can have a negative impact on Saskatchewan growers as the increased 

treatment cost affects the total input costs (Erskine et al., 1985; Saskatchewan Ministry of 

Agriculture, 2015).  

The assessment of lentil cv. CDC Robin for infection with S. botryosum isolate SB19 at the 

seedling, early-flowering, mid-flowering and podding stages under green polyethylene low tunnels 

in field conditions revealed that lentil plants inoculated at the seedling stage developed higher 
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disease severity, whereas seed yield overall was not affected by inoculation timing. Seed quality 

was compromised when plants were inoculated at the reproductive stages (early-flower and in some 

degree at mid-flower) compared with other growth stages. Reduction in seed weight, increased 

seed infection with Stemphylium spp., and reduction in seed diameter from the treatments 

inoculated at early-flowering stage were observed. The latter parameter was also reduced when 

inoculation was at the mid-flowering stage. These observations lend some support to the hypothesis 

that infection during reproductive stages impacts seed quality, but does not reduce yield. 
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4. ETIOLOGY OF STEMPHYLIUM BLIGHT IN SASKATCHEWAN 

4.1 Introduction 
Many species have been described in Stemphylium since Wallroth (1833) described this 

genus, naming the type species of the genus S. botryosum. However, the description of S. 

botryosum by Wallroth relied on a limited number of traits (Wiltshire, 1938; Simmons, 1967). 

Wiltshire (1938) published a detailed description of Stemphylium species based on conidium and 

conidiophore morphology. He also described the association of S. botryosum with Pleospora 

herbarum Rabenhorst as the perfect stage. Later on, Simmons (1967) addressed the problem of 

misclassification and misidentification of pathogenic species with a description and discussion of 

similarities among Stemphylium, Alternaria and Ulocladium. He also emphasized that only for S. 

botryosum was there solid evidence for its sexual state in P. herbarum. The association of 

Pleospora spp. with at least five other Stemphylium species, S. vesicarium (Wallroth), S. 

majusculum (Simons), S. triglochinicola (Sutton and Pirozynski), S. lancipes (Ellis and Everhart), 

and S. globuliferum (Vestergren) was subsequently made, of which the last was commonly 

misidentified as S. sarciniforme or S. botryosum (Simmons, 1969). Finally in 1985, the associations 

of P. herbarum and S. herbarum, P. tarda and S. botryosum, and P. alfalfa (Simmons) and S. 

alfalfae (Simmons) were made (Simmons, 1985).  

Lately, studies to differentiate species in the genus Stemphylium have repeatedly 

demonstrated overlap of morphological characters making the identification and description of 

species difficult (Camera et al., 2002; Wang et al., 2010). Molecular phylogenetic analysis has been 

increasingly used as an additional tool to classify species (Sleator, 2011). The use of morphological 

characters in conjunction with other characters such as conserved gene sequences may lead to more 

solid descriptions of species that improve understanding of relationships among species (Cai et al., 

2009). 

A common approach to phylogenetic studies in eukaryotes is the description of multiple 

genes such as in the case of the genus Colletotrichum where a combination of the nuclear rDNA 

internal transcribed spacer (ITS) region, glyceraldehyde – 3 phosphate dehydrogenase (gpd), 
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calmodulin (CAL), partial actin (ACT), glutamine synthetase (GS), and β-tubulin (TUB2) was 

found to be more informative than analysis of a single locus or a few loci (Cai et al., 2009).While 

the ITS sequence is the most frequently used locus in phylogenetic studies of fungi based on its 

very conserved regions, the gpd region possesses relatively high variability that makes this gene 

more suitable for phylogenic analysis at the species level. Both these genes have been used to 

explore relationships among Stemphylium spp. (Wang et al., 2010).  

The objectives of this study were to identify the species that causes stemphylium blight of 

lentil in Saskatchewan, and to determine the phylogenetic relationships among Stemphylium 

species based on morphology, morphometry and phylogenetic analyses. 

 

4.2 Materials and Methods 

4.2.1 Isolates 
Eleven isolates of Stemphylium spp. were selected from the culture collection of the Pulse 

Crop Pathology Research Group of the Crop Development Centre (CDC) at the University of 

Saskatchewan. The isolates were collected between 2002 and 2013 from lentil plants with 

stemphylium blight symptoms. The selection was based on geographic origin and different soil-

climatic zones in Saskatchewan. Four additional isolates were collected from lentil plants from a 

field experiment at the Seed Farm of the Department of Plant Sciences in 2013, three isolates were 

collected from pea at Swift Current in 2013, one isolate from faba bean collected in Saskatchewan 

in 2012 and one isolate originated from alfalfa collected in Saskatchewan in 2014 (Table 4.1). In 

addition to these field isolates from Saskatchewan, the ex-type specimen of S. botryosum was 

obtained from the Canadian Collection of Fungal Cultures in Ontario Canada (DAOM), two 

isolates from Bangladesh and one isolate of Alternaria sp. isolated from lentil in 2013 were 

included to add diversity and to determine whether lentil isolates belong to S. botryosum (Table 

4.1). The working collection of these isolates was stored cryogenically. Additionally, in the 

phylogenic analysis, sequences of the ITS and gpd regions of five named Stemphylium spp. and 

one Alternaria sp. were obtained from GenBank (http://www.ncbi.nlm.nih.gov/genbank/) (Table 

4.2).  
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Table 4.1: Isolates of Stemphylium species, ex-type specimen of Stemphylium botryosum, and 
Alternaria sp. selected for morphological characterization and phylogenetic analysis 

Culture collection 
ID 

 
Collected 

 
Soil type 

Geographic 
location in 

SK 

Origin  
Host 

SB11 2003 Brown SW Cabri SK/168 Lens culinaris Med. 
SB17 2004 Brown SW Hodgeville SK /135 Lens culinaris Med. 
SB19 2002 Dark brown SE Bladworth SK /282 Lens culinaris Med. 
SB20 2003 Dark brown SE Briercrest SK /130 Lens culinaris Med. 
SB27 2004 Dark brown SW Wiseton SK /286 Lens culinaris Med. 
SB31 2004 Dark brown NW Clavet SK/343 Lens culinaris Med. 
SB32 2004 Brown SW Eston SK/259 Lens culinaris Med. 
SB40 2004 Dark brown SE Lajord SK/128 Lens culinaris Med. 
SB44 2004 Dark brown NW Scott SK/380 Lens culinaris Med. 
SB49 2004 Black grey NE Tisdale SK/427 Lens culinaris Med. 
SB85 2004 Black grey NW Rosthern SK/403 Lens culinaris Med. 

SB126 2013 - - Bangladesh Lens culinaris Med. 
SB131 2013 - - Bangladesh Lens culinaris Med. 
SB133 2013 Dark brown NW Saskatoon SK/344 Lens culinaris Med. 
SB134 2013 Dark brown NW Saskatoon SK/344 Lens culinaris Med. 
SB135 2013 Dark brown NW Saskatoon SK/344 Lens culinaris Med. 
SB136 2013 Dark brown NW Saskatoon SK/344 Lens culinaris Med. 
SB137 2012 - - - Vicia faba L. 
SB138 2013 - - Saskatchewan Medicago sativa L. 
SB139 2013 Dark Brown SW Swift Current  SK/165 Pisum sativum L. 
SB140 2013 Dark Brown SW Swift Current SK/165 Pisum sativum L. 
SB141 2013 Dark Brown SW Swift Current SK/165 Pisum sativum L. 

 DAOM195299 - - -  Stemphylium 
botryosum ex-type 

Medicago sativa L. 

Alternaria sp. 2013 Dark brown NW Saskatoon SK/344 Lens culinaris Med. 
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Table 4.2. Accession numbers of partial sequences retrieved from GenBank for the ITS and gpd 
gene regions of six isolates included in the phylogenetic analysis of Stemphylium species.  

 
Species 

 
Original 

ID1 

Accession number 
 

ITS2 
 

gpd3 

Alternaria alternata  EGS 34-016 AF071346 AF081400 
Stemphylium alfalfae (Ex-type) EGS 36-088 AF442775 AF443874 
Stemphylium gracilariae (Ex-type) EGS 37-073 AF442784 AF443883 
Pleospora herbarum /  
Stemphylium herbarum (Ex-type) 

EGS 36-138 AF442785 AF443884 

Stemphylium vesicarium (Type) EGS 37-067 AF442803 AF443902 
Pleospora tarda /  
Stemphylium botryosum(Ex-type/Type) 

EGS 08-069 AY329168 AY316968 

1 EGS = E. G. Simmons, Mycological Services, Crawfordsville, Indiana;  
2 Internal transcribe spacer (18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal 
RNA gene and internal transcribed spacer 2, complete sequence; and 26S ribosomal RNA gene, partial sequence) gene 
region;  
3 Partial glyceraldehyde-3-phosphate dehydrogenase gene. 

4.2.2 Morphological and morphometric isolate description 
The qualitative description of each isolate and the description of the shape and size of 

conidia were conducted for all isolates listed in Table 4.1, with the exception of Alternaria sp. The 

experiment was a randomized complete block design with four replicate Petri dishes (90 mm) for 

each isolate and the experiment was repeated once. Each isolate was cultured from a single 

conidium on potato dextrose V8 juice (V8-PDA) medium (10 g potato dextrose agar, 10 g 

granulated agar, 3 g CaCO3, 150 mL V8-juice and 850 mL distilled water) (Camara et al., 2002) 

and was incubated at 25oC under continuous light. Culture color, shape, texture and diameter were 

described and/or measured.  

Morphometric studies of conidial shape and size were done with sixty conidia arbitrarily 

picked from the four replicates (about 20 conidia per Petri dish), for which the length and width 

were measured.  

 

4.2.3 Molecular phylogenetic analysis 
The internal transcribe spacer (ITS) and a partial region of the glyceraldehyde-3-phosphate 

dehydrogenase gene (gpd) were sequenced to establish monophyletic relationships. As an initial 

step, all 24 isolates listed in Table 4.1 were grown on PDA medium as monoconidial cultures to 
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produce fungal tissue. A plug of the mycelium was transferred into liquid potato dextrose medium 

(4 g potato extract, 20 g dextrose, 876 mL of distilled water) and incubated at 25°C under 12 h 

light/dark (Mehta, 2001). The mycelia produced after three days of incubation were filtered through 

sterile miracloth and transferred into 2 mL vials. Vials with mycelia were frozen at -80oC for 24 h, 

before being lyophilized for another 24 h. Freeze-dried mycelia were pulverized by introducing 

two to three glass pearls into each tube and shaking them for five minutes in a mechanical shaker 

at approximately 1000 r.p.m. Genomic DNA was extracted with the DNeasyTM Plant Mini Kit-

QIAGEN, (Chou and Wu, 2002; QIAGEN, 2012) following the manufacturer’s instructions. The 

genomic DNA from all isolates were stored in deionized RNA-free water at -20oC. 

The amount of genomic DNA of each isolate was determined by mixing 2 µL of DNA 

solutions with 6 µL of RNA-free deionized water and 2 µL of Tracklt™ Cyan\Orange loading 

buffer (Invitrogen®, Life Technologies Corporation, www.lifetechnologies.com). The samples 

were loaded into a 1% agarose gel and run at 90 volts for 1 hour.  A low DNA mass ladder 

(Invitrogen®, Life Technologies Corporation, www.lifetechnologies.com) was included to 

compare and estimate the amount of DNA. DNA samples were subsequently diluted to achieve a 

final concentration of 20 ng µL-1 for polymerase chain reaction (PCR). 

ITS and gpd primers (Table 4.3) for amplification and sequencing were described by Wang 

et al. (2010). The reaction mixture consisted of 2 µL of 10 X buffer (MgCl2), 0.25 µL of 10 mM 

of dNTP mixture, 0.2 µL of 10 pmol of each primer, 0.2 µL of Taq DNA Polymerase (GenScript, 

USA Inc. www.genscript.com), 20 ng of DNA extracted, and 16.15 µL of sterile water. PCR was 

performed on a C1000 Thermal Cycler® with 35 cycles at 94oC for 30 s of denaturation, 57oC for 

1 min, 72oC for 1.5 min of annealing, and a final extension at 72oC for 7 min (Wang et al. 2010; 

and Camara et al., 2002).  

DNA bands were excised from the agarose gel with a sterile scalpel. The pieces of gel were 

weighed and purified with the Bio Basic Inc EZ-10 Spin Column kit. Aliquots of 50 ng µL-1 of the 

purified ITS bands (above 2000 bp), and 10 ng µL-1 of the purified gpd bands (below 2000 bp) and 

the respective primers (Table 4.3) were used for sequencing at the National Research Council of 

Canada (NRC), Saskatoon, Saskatchewan.  

http://www.lifetechnologies.com/
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Table 4.3: Primers used for phylogenetic analysis of Stemphylium species (Wang et al., 2010; 
Camara et al., 2002; and White et al., 1990) 

Primer Sequence 5’- 3’ 
NS 1   (PCR amplification) GTAGTCATATGCTTGTCTC 
ITS 3 (sequencing) GCATCGATGAAGAACGCAGC 
ITS 4 (PCR amplification, sequencing) TCCTCCGCTTATTGATATGC 
ITS 5 (sequencing) GGAAGTAAAAGTCGTAACAAGG 
ITS 2c (sequencing) CAGTAAACATGGAAGTTCGA 
gpd_f (PCR amplification) GCACCGACCACAAAAATC 
gpd_r (PCR amplification) GGGCCGTCAACGACCTTC 
gpd_ef (sequencing) CGGCTTCGGTCGCAT 
gpd_er (sequencing) GCCAGGCAGTTGGTTGTG 
gpd_if (sequencing)  CACGGCCAGTTCAAG 
gpd_ir (sequencing) GGCGGGGTCCTTCTCC 

  

4.2.4 Data collection and analysis 
The morphological and morphometric descriptions of each isolate colony (except 

Alternaria sp.) were done after 7 days of incubation. The diameter of each culture colony was 

measured in millimeters. Analysis of variance was conducted with the mixed model procedure in 

SAS. Blocks and repeats of the experiment were considered random factors, and isolates were the 

fixed factor. Linear contrast analyses were conducted to compare the ex-type S. botryosum 

(DAOM195299) and other isolates. Means and standard errors of the means were generated with 

the means procedure in SAS. 

The length and width of the 60 conidia per isolate arbitrarily picked from 14-day old 

cultures were measured on glass slides with distilled water with a Carl Zeiss compound microscope 

at 20x magnification. Representative pictures of conidia were taken for each isolate with the ZEN 

Carl Zeiss camera. The size and width of conidia were compared with those of the ex-type of S. 

botryosum by single degree of freedom contrasts. 

Sequences of the ITS (18S ribosomal RNA gene, partial sequence; internal transcribed 

spacer 1, 5.8S ribosomal RNA gene and internal transcribed spacer 2, complete sequence; and 26S 

ribosomal RNA gene, partial sequence) gene region and the partial gpd gene of each isolate were 

analyzed and edited with the DNA Baser Sequence Assembler v4 (2013) (Heracle BioSoft, 

www.DnaBaser.com). The edited sequences of each target fragment were pooled and a consensus 

sequence was generated. Sequence data for the two gene regions (ITS + gpd) were concatenated 

http://www.dnabaser.com/
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(Gadagkar et al., 2005) for the 24 isolates sequenced, and the six sequences of species belonging 

to the Pleosporales retrieved from GenBank (http://www.ncbi.nlm.nih.gov/genbank/). Pairwise 

and multiple alignments were done for each gene separately and for the concatenated data set with 

the ClustalW algorithm. Alignments and the phylogenic analyses were carried out using Molecular 

Evolutionary Genetics Analysis Version 6.0 (Tamura et al., 2013).  

The first approach in the phylogenetic analysis was through the Neighbor-Joining (NJ) 

(Saitou and Nei, 1987) method as it is considered to be the fastest and most efficient method 

(Gadagkar et al., 2005). Additionally, the Maximum Likelihood (ML), and 

Unweighted Pair Group Method with Arithmetic Mean (UPGMA) (Sneath and Sokal, 1973) 

methods were explored to obtain further evidence of the evolutionary history of Stemphylium spp.  

Branch topologies of phylogenetic trees constructed with the NJ and UPGMA methods 

were tested with the bootstrap test with 1000 replicates. The evolutionary distances were calculated 

with the p-distance method including the 1st, 2nd, 3rd and noncoding codon positions. Gaps and 

missing data were completely deleted.   

The Tamura-Nei model (Tamura and Nei, 1993) was used to construct the highest log 

likelihood (ML) phylogenetic tree. The NJ and BioNJ algorithms with the Maximum Composite 

Likelihood (MCL) were applied to estimate the pairwise distances. The 1st, 2nd, 3rd and noncoding 

codon positions were included; all gaps were treated as missing data and were eliminated. The 

Bayesian inference method using MrBayes 3.1 (Huelsenbeck and Ronquist, 2001) was used to 

generate the species clusters in the ML tree of the concatenated gene regions. This analysis ran for 

10 million generations in place of 1 million, and trees were sampled at every 1000 generation in 

place of 100 generations (Bhadauria et al., 2015). 

Additionally, similarity analyses and estimation of the number of base pair differences per 

site, and estimation of the percentage identity among concatenated sequences of each isolate were 

carried out using Basic Local Alignment Search Tool logarithm (BLAST, 

http://blast.ncbi.nlm.nih.gov/Blast.cgi) and pairwise analyzes (MEGA6, Tamura et al., 2013), 

respectively. A percent identity matrix was created using multiple sequence alignment by 

Clustal2.1 Omega (EMBL-EBI, www.ebi.ac.uk).  

 

http://www.ebi.ac.uk/
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4.3 Results  

4.3.1 Morphological and morphometric isolate description 
Colony diameter varied among isolates (P < 0.0001). Colony diameters after seven days 

incubation ranged from 33 mm to 80 mm among isolates (Fig. 4.1). The comparison of means 

revealed a continuum of increasing diameters. The colony diameter of the ex-type (DAOM 195299) 

was 45.5 ± 2.59 mm and was similar to SB17, SB20, SB31 and SB134. This was confirmed through 

linear contrast analyses between the ex-type and those four isolates (P > 0.05), whereas contrasts 

between the ex-type and the other isolates were significant (P < 0.05).  

 

 

Figure 4.1: Colony diameter of field isolates of Stemphylium spp. and the S. botryosum ex-type 
(DAOM195299) after seven days incubation on V8-PDA medium at 25oC under continuous light. 
 

The qualitative description of the 23 isolates after seven days incubation revealed four 

distinctive groups sharing color, texture, and shape of cultures. The first group included SB126, 

SB137 and SB138. Cultures of this group were dark green, and the colony surface was covered 

with white mycelia surrounded with yellow concentric rings; the texture was cottony (Fig. 4.2 

Group 1). The second group consisted of SB27, SB44, SB49, SB85, SB133, SB136, SB139 and 

SB140. The colonies were greyish with circular concentric rings that turned from dark grey in the 

center of the colony to light grey to white towards the edge of colony; the texture was velvety (Fig. 
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4.2 Group 2).The third group consisted of SB11, SB19, SB32, SB40, SB131, SB135, SB141 and 

the ex-type DAOM195299. The colonies were uniformly grey and had slightly circular, concentric 

rings that turned to light grey from the center of the colony to the outer edge. It also had a velvety 

texture (Fig. 4.2 Group 3). The fourth group with similar cultural features included SB17, SB20, 

SB31 and SB134. The colonies were greyish with irregular concentric rings ranging from dark grey 

in the center of colony to light grey and white at the outer edge (Fig.4.2 Group 4). 
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Figure 4.2. Cultures of field isolates of Stemphylium spp. and S. botryosum ex-type DAOM195299 
after seven days incubation on V8-PDA medium at 25oC under continuous light. 
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The length and width of conidia of the 23 isolates ranged from 17 to 37 µm and 16 to 24 

µm, respectively. Only slight variation in conidial colour, shape and septation were observed 

among isolates except for SB126, SB137 and SB138, which were smaller (Fig. 4.3). Analysis of 

conidial size (length and width) revealed large differences among isolates (P < 0.0001); however 

in some isolates the length or width overlapped (Table 4.4). Contrast analyses between the ex–type 

of S. botryosum and the 22 isolates revealed that only the length of SB131 was similar to the ex–

type (P  = 0.26), whereas the width of conidia of isolates SB19, SB32, SB131, SB135 were similar 

to that of the ex-type (P ≥ 0.1). 
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Figure 4.3. Conidia of field isolates of Stemphylium spp. and the S. botryosum ex-type 
DAOM195299 after 14 days incubation on V8-PDA medium at 25°C. Photographed at 20x with 
the ZEN Carl Zeiss camera.  
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Table 4.4. Conidial length and width of field isolates (N = 60) of Stemphylium spp. and the S. 
botryosum ex-type (DAOM195299) after 14 days incubation on V8-PDA medium at 25oC.  
 

Isolate 
Conidia size (µm) 

Length Width 
DAOM195299 35.7a ± 0.5b 22.2 ± 0.3 

SB11 32.9 ± 0.6 20.2 ± 0.3 
SB17 27.8 ± 0.5 19.1 ± 0.4 
SB19 26.3 ± 0.7 22.8 ± 0.8 
SB20 30.4 ± 0.6 19.6 ± 0.3 
SB27 30.4 ± 0.5 21.1 ± 0.3 
SB31 29.2 ± 0.6 19.2 ± 0.3 
SB32 33.7 ± 0.5 21.7 ± 0.3 
SB40 30.7 ± 0.6 20.8 ± 0.4 
SB44 30.8 ± 0.5 21.1 ± 0.3 
SB49 29.0 ± 0.5 19.8 ± 0.3 
SB85 30.9 ± 0.7 24.1 ± 0.7 
SB126 17.0 ± 0.2 16.8 ± 0.2 
SB131 36.5 ± 0.5 22.4 ± 0.3 
SB133 26.0 ± 0.8 23.2 ± 0.8 
SB134 30.6 ± 0.5 16.6 ± 0.3 
SB135 27.5 ± 0.6 21.2 ± 0.6 
SB136 32.1 ± 0.5 20.8 ± 0.3 
SB137 16.9 ± 0.3 16.3 ± 0.2 
SB138 18.5 ± 0.3 18.3 ± 0.2 
SB139 29.5 ± 0.5 19.5 ± 0.3 
SB140 27.7 ± 0.4 18.5 ± 0.3 
SB141 28.9 ± 0.4 19.2 ± 0.3 

a Mean.  
b Standard deviation. 
 

4.3.2 Molecular phylogenetic analysis 
The systematic relationships among the 24 isolates and the six sequences retrieved from 

GenBank were estimated by comparisons of DNA sequences of the ITS and gpd gene regions, and 

the concatenated DNA sequences (ITS + gpd).  

Comparison between the ITS and gpd phylogenetic trees and among NJ, UPGMA and ML 

methods revealed similarities in the tree topology. The trees constructed, based on ITS and gpd had 

a strong monophyletic group (bootstrap value = 99 to 100%) that included 20 of the 23 isolates of 

Stemphylium spp. studied. This group also included the Stemphylium and Pleospora species 

retrieved from GenBank. On the other hand, three of the 23 isolates under study were outside of 
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the monophyletic group in the ITS and gpd trees (Appendix 5 - 7. The phylogenetic trees of the 

concatenated DNA sequences built by using the NJ (Appendix 8), UPGMA (Appendix 9) and ML 

(Appendix 10) methods revealed topology similarities as well.  

The evolutionary history of the concatenated DNA sequences inferred by using the ML 

method and clade support using the Bayesian posterior probability confirmed the inference 

obtained in the trees built with single gene regions (Fig. 4.4). This approach also revealed a 

monophyletic group with 20 of the 23 isolates sequenced and the five species of Stemphylium and 

Pleospora. Furthermore, two well supported groups (bootstrap values of 87 and 99%) within the 

monophyletic Stemphylium group were consistently clustered in every tree constructed (Fig. 4.4. 

Cluster A and Cluster B).  

Similarity values from 99 to 100% among sequences within Cluster A (13 isolates and S. 

botryosum ex-type) were obtained through estimation of base pair differences per site. The number 

of different nucleotides per site sequences within Cluster A ranged from zero to two out of 1064 

nucleotides. The pairwise analyses estimated from 922 positions after elimination of gaps and 

missing data revealed that the number of base pair differences per site after averaging all sequence 

pairs within sequences in Cluster A was 0.002. Similar values (> 99%) of similarity were also 

observed within sequences in Cluster B (six isolates and the sequences of S. gracilariae, P. 

herbarum, S. vesicarium and S. alfalfae retrieved from GenBank. The number of different 

nucleotides per site within Cluster B ranged from zero to 10 out of 1064 nucleotides and the 

pairwise analyses estimated from 922 positions after elimination of gaps and missing data revealed 

that the number of base pair differences per site after averaging all sequence pairs was 0.027. The 

percentage identity estimated within sequences in Cluster A and within sequences in Cluster B 

ranged from 96.8 to 100% and from 97.8 to 100%, respectively (Appendix 11). 

Additionally, sub-group B.1 (belonging to Cluster B) with four isolates from lentil and two 

isolates from pea, all collected in Saskatchewan, as well as the accessions of the type species of P. 

herbarum EGS 36-138, S. vesicarium EGS 37-067 and S. alfalfa EGS 36-088 clustered together as 

well (Fig. 4.4.). The similarity values within sequences in B.1 ranged from 99 to 100% with zero 

to one out of 1061 nucleotide differences. The number of base pair differences per site after 

averaging all sequence pairs within B.1 was zero. The percentage identity estimated within 

sequences in Cluster B.1 ranged from 99.9 to 100% (Appendix 11). 
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Individual comparison between P. tarda EGS 08-069 vs. Cluster B.1 and S. gracilariae 

EGS 37-073 vs. Cluster B.1 were carried out. Similarity of P. tarda and S. gracilariae with isolates 

in Cluster B.1 was 99% for both species, and the number of different nucleotides per site sequences 

ranged from six of 988 to 10 of 1061, respectively. The number of base pair differences per site 

averaged over all sequence pairs between P. tarda and Cluster B.1, and between S. gracilariae and 

Cluster B.1 estimated by the pairwise analyses was 0.016 and 0.005 respectively. The percentage 

identity averaged in sequences within Cluster B.1 compared with P. tarda was 98.04% and 

compared with S. gracilariae 99.4% (Appendix 11). 

Meanwhile, lower similarity values from 96 to 97% between Clusters A and B were 

revealed through the estimation of base pair differences per site. In addition, the number of different 

nucleotides per site between the two clusters ranged from 13 to 43 out of 1064 nucleotides, and the 

number of base pair differences per site averaged over all sequence pairs between Clusters A and 

B estimated by the pairwise analyses was 0.027. The percentage identity between sequences in 

Cluster A and Cluster B ranged from 94.1 to 96.8% estimated using multiple sequence alignments 

(Appendix 11). 

The Alternaria sp. isolate collected from the field, the A. alternata EGS 34-016 sequences 

retrieved from GenBank, as well as three isolates isolated from lentil with stemphylium blight 

symptoms, (SB126 from Bangladesh, faba bean isolate SB137, alfalfa isolate SB138 from 

Saskatchewan) presumed to be Stemphylium spp., were positioned as out-groups. Comparisons 

among the sequences in the monophyletic Stemphylium group with the Alternaria cluster and with 

the other three isolates in the out-group had 86% similarity (in both comparisons) and 147 and 392 

different nucleotides per site out of 1078 and 1064 nucleotides, respectively. The number of base 

pair differences per site averaged over all sequence pairs between the monophyletic Stemphylium 

group and Alternaria spp. cluster and with the three isolates in the out-group estimated by the 

pairwise analyses was 0.123 and 0.380, respectively. The percentage of identity between the 

monophyletic Stemphylium group vs. Alternaria ranged from 85.9 to 87%, and among the three 

isolates out-grouped ranged from 58.7 to 59.2% (Appendix 11). 
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Figure 4.4: Most likely phylogenetic tree obtained with the Maximum Likelihood method (log 
likelihood = -2936.67) from the concatenated DNA sequences of the ITS and gpd of 23 isolates of 
Stemphylium spp. and an Alternaria sp. sequenced in this study, and sequences of ex-types/types 
of five Stemphylium species and one isolate of Alternaria alternata retrieved from GenBank. 
Bootstrap values ≥ 75% and Bayesian posterior probability values above 0.73 are shown above or 
below branches. The evolutionary analyses were conducted in MEGA6, and the Bayesian clade 
support was conducted in MrBayes 3.1. 
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4.4 Discussion 
The colony diameter of the 23 isolates under study was not a feature that differentiated 

potential species of Stemphylium since there was a continuum of increasing diameters. On the other 

hand the qualitative culture description was more informative since four distinctive groups with 

similar features were distinguished. However, under the same temperature conditions (25oC), but 

on PDA medium, Rahman et al. (2010) observed that several isolates of S. botryosum can develop 

slight differences in colony features. Similarly, Hosen et al. (2009) described significant variation 

in colony features among four isolates of S. botryosum obtained from lentil with stemphylium 

blight symptoms when those isolates were cultured at 25oC on lentil dextrose agar. Both groups of 

authors described an average colony of S. botryosum as greenish brown to black with a peripheral 

white ring, with velvety texture, which was similar to the description of the colonies of 20 isolates 

in this study including the ex-type (DAOM195299). Meanwhile, in this study only four isolates 

showed the irregular shape of the colony described by both authors. 

The analyses of conidial size measurements revealed that only isolate SB131 shared the 

same length and width with the ex-type, whereas the ex-type was larger compared to the rest of the 

isolates. No qualitative differences were observed in terms of shape, color, or septation. Three 

isolates, SB126 from lentil in Bangladesh, SB137 from infected faba bean in Saskatchewan, and 

SB138 from alfalfa in Saskatchewan shared similar colony diameters, colony features and conidial 

sizes, but were different compared to the published S. botryosum descriptions and the rest of the 

isolates studied. 

The molecular phylogenetic analyses of the 23 presumed Stemphylium species, irrespective 

of the approach for analysis, revealed one strongly supported Stemphylium group with 20 presumed 

Stemphylium isolates studied here as well as the five accessions of Stemphylium species included 

from GenBank. A similar grouping of Stemphylium species in a monophyletic group was reported 

previously (Wang et al., 2010; Inderbitzin et al., 2009; Camara et al., 2002). While the ITS is 

considered the barcoding region for fungi (Crous et al., 2014), gpd is one of at least three additional 

genes (gpd, EF-1 alpha and vmaA-vpsA) (Inderbitzin et al., 2009) already used for evolutionary 

reconstruction of Stemphylium species (Graf et al., 2016; Kurose et al., 2015; Pei et al., 2011; Deng 

et al., 2014).  
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The three methods of phylogenetic analyses used here (NJ, UPGMA and ML) were 

consistent in separating the group of Stemphylium species, the out-group of Alternaria, and the out-

group of three misidentified isolates with strong cluster support through bootstrap values from 99 

to 100%. Similarly, bootstrap values of 100 and 97% in the cluster of Stemphylium-Pleospora and 

Alternaria alternate, respectively, using combined ITS and gpd sequences were also reported by 

Wang et al. (2010). This clade support, based on bootstrap values, was higher than those reported 

to support the separation of the genera Alternaria, Ulocladium and Stemphylium (73, 82 and 100%, 

respectively) using ITS sequences only (Chou and Wu, 2002). Lower bootstrap values of 58 to 

100% for cluster support to separate Alternaria spp. and Setosphaeria spp. from Stemphylium-

Pleospora spp. using combined ITS and gpd sequences were reported by Camara et al. (2002). 

Tree topology and bootstrap values from 79 to 100% also supported the separation of the genera 

Ophiosphaerella and Phaeosphaeria and Pleospora using phylogenetic analyses of the ITS 

sequences (Camara et al., 2000). 

The separation among Stemphylium species and from other genera has consistently been 

supported by the bootstrap test or the Bayesian clade support (Camara et al., 2000; Camara et al., 

2002; Inderbitzin et al., 2009; Wang et al., 2010). Based on results here, the three out-grouped 

isolates misidentified as Stemphylium appear to belong to another group distinct from Alternaria 

spp. and Stemphylium spp., which is also supported by differences in colony and conidial 

morphology. Alternaria was used as an out-group since it is also a monophyletic genus (Barbee et 

al., 1999) with many morphological similarities, but which was previously shown to be distinct 

from Stemphylium (Yanez, 2001).  

The grouping of the Stemphylium isolates into Clusters A and B was observed in the 

topology of each tree based on a single gene or with the concatenated sequences. Clusters were 

supported with strong bootstrap values of 87 and 99% for Cluster A and B, respectively.  

Similarities among isolates within cluster A were from 97 to 100% and similarities among isolates 

within Cluster B were from 98 to 100%. These values were similar to, or higher than values used 

to separate isolates of Ophiosphaerella agrotis (similarity among isolates from 87% to 100%) from 

Ophiosphaerella spp. (similarity among isolates from 95% to 97%) by Camara et al. (2000). 

However, the similarity values are lower than 99.1% used to separate species of S. solani and S. 

globuriferum using ITS sequences only (Hanse et al., 2015). Furthermore, the number of different 
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nucleotides (13 to 43 out of 1064 nucleotides among isolates within Cluster A and among isolates 

within Cluster B, respectively) and base pair differences per site (0.027) between the two clusters 

was larger than the seven nucleotide differences out of 529 nucleotides (0.013) used to separate S. 

lycopersici from S. vesicarium by Yanez (2001). Therefore, the similarity shared among isolates 

within each cluster and the difference in the nucleotide differences between clusters may support 

the assumption that Clusters A and B represent two different species of Stemphylium. However, 

even the use of multiple loci does not guarantee that species are accurately distinguished as pointed 

out by Inderbitzin et al. (2009), who found that P. herbarum, P. alfalfa, P. tomatonis, P. sedicola 

and S. vesicarium clustered together as one species in the phylogenetic analyses based on four loci.  

The location of P. tarda EGS 08-069 in the phylogenetic tree revealed that it is more closely 

related to S. gracilariae and the species representing isolates in B.1 than to S. botryosum. The 

comparison of sequences by the BLAST algorithm in the GenBank data base revealed that the 

identity of the sequences of P. tarda EGS 08-069 and P. herbarum var. herbarum CBS 191.86 

(data not shown) was the same. On the other hand, the unexpected relationship of P. tarda isolate 

EGS 08-069, listed as ex – type / type by Inderbitzin et al. (2009), but not according to Simmons 

(1985), indicated that it was distinct from the ex-type specimen DAOM 195299. The ex-type 

specimen of S. botryosum originates from the type specimen EGS 04-118C designated by Simmons 

(1985), whereas P. tarda EGS 08-069 was another isolate studied but not designated as type 

(Simmons,1985). Based on results here, P. tarda EGS 08-069 is not suitable for the identification 

of S. botryosum.  

Whereas isolates in Cluster A can be confirmed as S. botryosum with some confidence 

based on the comparison with the ex-type for S. botryosum DAOM 192599, the species of the four 

isolates collected from lentil and two from pea in Cluster B, is not clear since three validly 

described species of Stemphylium had identical sequences (as retrieved from GenBank) suggesting 

that they are in fact the same species. The possibility of detecting more than one species of 

Pleospora / Stemphylium in Canadian fields was mentioned previously by Inderbitzin et al. (2009) 

who collected three Pleospora spp. from nonagricultural hosts in British Columbia, Canada, that 

were recognized as three different species based on ITS, gpd, EF-1 alpha and / or vmaA-vpsA.  

The use of multiple loci in phylogenetic species recognition does not always differentiate 

between species that are closely related (Inderbitzin et al., 2009). Nevertheless, identical sequences 
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for the ITS and gpd found for different (morphology-based) species of Pyrenophora / Drechslera 

in public data banks highlights the limitation of morphology only-based species delineation (Zhang 

and Berbee, 2001). Results here suggest that an extensive review of the genus Stemphylium is 

necessary to clarify the number of species in this genus, so that an accurate identification of the 

pathogens causing stemphylium blight in Saskatchewan’s lentil fields can be accomplished. 
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5. GENERAL DISCUSSION  
Field experiments on stemphylium blight infection at different growth stages of lentil did 

not result in yield loss. This is in contrast to reports from Bangladesh where more than 80% yield 

loss was reported (Hosen et al., 2009). Yield comparisons here were probably compromised by the 

relatively high amount of stemphylium blight that developed in control treatments. Therefore, the 

question of yield loss due to stemphylium blight in Canadian lentil remains inconclusive. However, 

higher seed infection levels and seed staining of lentils from the early and mid-flower inoculation 

treatments may indicate that the quantity of seeds could also be affected if compared to a truly 

disease-free control. 

Based on greenhouse experiments, it was previously observed that seed yield of a 

susceptible, but not a partially resistant cultivar steadily declined when plants were inoculated at 

the seedling, pre-flower or pod setting stage (Banniza, et al. 2006). This consistent decline in seed 

yield due to stemphylium blight was not observed under field conditions here, even though the 

level of disease was higher in the treatments artificially inoculated with S. botryosum compared 

with control treatments. It is possible that the biological threshold for yield loss was not achieved, 

that CDC Robin has some level of resistance to stemphylium blight, or that stemphylium blight 

may be one of those diseases where the relationship between disease severity and seed yield is not 

very strong. This was observed in field pea in Saskatchewan where disease resulting from 

Mycosphaerella pinodes infection, did not reduce pea yields regardless of fungicide applications 

(Gossen et al., 2001) or tillage system used (Bailey et al., 1999).  

The empirical model used to study yield loss here focused on the relationship between 

cumulative disease over time and seed yield at harvest, which is a common approach to establish a 

disease - yield loss curve (Cooke, 2006). A model that captures all explanatory variables would 

likely be better to determine an economic threshold. Temperature and humidity are two important 

variables whose effects on disease initiation have been studied (Huq and Khan, 2008). For example, 

leaf wetness is a key factor for infection and disease severity as was observed with S. vesicarium 

infecting onion leaves (Llorente and Montesinos, 2001). Leaf wetness period and optimal 
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temperatures were also studied for the development of stemphylium blight in lentil under controlled 

greenhouse conditions (Mwakutuya and Banniza, 2010). Use of low tunnels optimized conditions 

for S. botryosum infection, promoted stemphylium blight and host growth. However, the 

complexity of the disease-yield loss relationship increases with multiple diseases, or when 

environmental variables are included (Teng, 1987). 

Whereas the effects of environmental conditions on the development of stemphylium blight 

are relatively well studied (Mwakutuya and Banniza, 2010), the interaction of multiple pathogens 

on lentil is not understood. In addition to stemphylium blight, botrytis grey mold and sclerotinia 

were observed with higher incidence in low tunnels during the first year compared to the second 

year experiments. It is possible that these diseases in addition to stemphylium blight in 2013 

contributed to the yield loss that was observed in that year. Pathogens such as Epicoccum sp., 

Alternaria sp., Botrytis sp., and Fusarium sp. were also detected in seed samples, but at lower 

levels than Stemphylium spp. A report of S. botryosum and Epicoccum purpurascens Ehrenb. ex 

Schlecht. causing leaf spots on lentil in Hungary revealed that both species were pathogenic 

causing similar reddish spots in early infections. Symptom differentiation occurred on older leaflets 

when the colour of spots turned to grey in the case of S. botryosum, and to black in the case of E. 

purpurascens (Simay, 1990). S. vesicarium and Alternaria porri cause severe epidemics in onion 

fields in the United States with up to 90% crop loss due the two pathogens that produce similar 

purple spot symptoms on onion leaves (Suheri and Prince, 2000; Yanez, 2001). In both examples 

the two pathogens had overlapping symptoms that could not be distinguished in the field, at least 

initially in the case S. botryosum and E. pupurascens. Co-infection by several pathogens may 

therefore, contribute significantly to yield loss. 

Direct losses caused by a disease can be primary or secondary. The direct primary loss is 

measured at seed harvest and involves reduction in quantity and quality in addition to the economic 

loss caused by the expenses for control measures (Cooke, 2006). Although yield loss at harvest is 

the most immediate effect a producer may experience due to stemphylium blight, additional 

consequences may be encountered in the following year when diseased seed is used for seeding the 

next lentil crop. Seed infection can affect seed germination and seedling vigour, depending on the 

level of seed-to-seedling transmission, and can represent the initial sources of inoculum in a field. 

It is known that infected lentil seeds with S. botryosum have reduced germination, and seed staining 
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levels are inversely proportional to germination rates (Banniza et al., 2006). The highest levels for 

seed infection of 3.4% and for seed staining of 13% obtained in this study were not as high as the 

25% for infected seed and 75 to 100% for stained seeds reported previously (Banniza et al., 2006). 

However, it will be necessary to determine the seed-to-seedling transmission rate since this is 

required to estimate the risk of seed infection for subsequent crops. Seed infection as the main 

source of inoculum was reported for S. vesicarium in onion fields (Yanez, 2001).  

The direct secondary loss is long term through the accumulation of inoculum in the soil and 

in stubble that reduces the expected future yield (Cooke, 2006). This is of particular importance 

when crop rotations are shortened as is currently the case for lentil in Saskatchewan (Madden, 

2016). In addition to the accumulation of inoculum from residue, there is also a chance that this 

residue contains the sexual stage, which is considered the overwintering stage as reported for S. 

vesicarium on asparagus (Meyer et al., 2000; Basallote-Ureba et al., 1999), and pear (Rossi et al., 

2005).The presence of the sexual stage of a pathogen implies genetic recombination that could 

change the population over generations, particularly with regard to the development of new 

pathogen virulence that could affect resistance genes in the host.   

Although breeding programs can improve the performance of lentil varieties by breeding 

for disease resistance and yield, this is a costly and time consuming process, thus it is important to 

determine the potential for stemphylium blight to cause economic loss to lentil producers. For 

Saskatchewan, the most important lentil diseases are ascochyta blight and anthracnose (Morrall, 

1997). An example of the successful lentil breeding is CDC Robin, one of the first cultivars with 

anthracnose (Race 1) and ascochyta blight resistance that was developed at the Crop Development 

Centre of the University of Saskatchewan without compromising seed yield (Vandenberg et al., 

2002). The introduction of resistant varieties can lead to a shift in pathogens, and that may have 

been witnessed in Saskatchewan where ascochyta blight has declined in prominence. Indeed, the 

last major outbreak was recorded in 2005 (Morrall et al. 2006). Even in a wet year such as 2010, 

45 to 100% (provincial mean 84%) of seed samples analyzed at commercial seed testing labs were 

free of ascochyta blight, which was attributed to the widespread cultivation of ascochyta blight 

resistant cultivars (Morrall et al. 2011). It appears that as ascochyta blight has declined in 

importance, stemphylium blight has become more prominent in Saskatchewan (Mwakutuya and 

Banniza, 2010). This occurred during a period when lentil production has risen to be transformed 



62 

 

from special crop into a major Canadian commodity. Disease surveys in lentil fields and testing of 

seed samples have reported traces of stemphylium blight in seed and crop samples with low to high 

levels during 2002 to 2015 (e.g. Chongo et al., 2003; Morrall et al., 2005; Banniza et al., 2009; 

Miller et al., 2012; Dokken-Bouchard et al., 2016). Other reasons for the increased reports on 

stemphylium blight could be increased awareness and better detection, or the fact that this disease 

may have cycles that match the climate cycles observed in the regions where lentil is produced. In 

Patna India, for example, stemphylium blight was reported as a cyclic disease, showing up at high 

levels every two to four years (Sinha and Singh, 1993). Similar disease cycles were reported from 

pear where stemphylium blight (caused by S. vesicarium) shifted from 5 to 10% severity in one 

year to 90% in the subsequent year (Montesinos and Vilardell, 1992). However, the decline in 

ascochyta blight due to resistant varieties may have given Stemphylium spp. a competitive 

advantage leading to an increase in stemphylium blight on varieties that currently do not have high 

levels of resistance to this particular disease. 

Stemphylium blight on lentil in Saskatchewan was previously reported to be caused by S. 

botryosum (Dokken-Bouchard, 2010; Morrall, 2003), likely based on other reports that indicated 

this pathogen as the causal agent (Huq and Khan, 2008; Bayaa and Erskine 1998; Bakr and Ahmed, 

1992; Chowdhury et al., 1997). A detailed characterization of Canadian isolates from lentil has not 

been published to date, although the identification of pathogenic species is important since each 

pathogen may behave differently epidemiologically and may be virulent on different varieties. 

The different pathogenic species of Stemphylium described from around the world have 

similar morphology and molecular features, which have made identification difficult (Graf et al., 

2016; Kurose et al., 2015) as was observed in the current study of conidia. As concepts around 

species recognition have evolved over the last decade, the complexity in the identification of fungal 

species has increased (Taylor et al., 2000). The classical evolutionary species concept comprises 

morphology, biology and phylogenetic species recognition (Taylor et al., 2000); however, when 

morphological features overlap or in the absence of sexual states that could be used for the 

biological species concept based on mating, molecular phylogenetic species recognition should be 

the approach of choice (Taylor et al., 2000). Unlike morphological characters, DNA is consistent 

and is not affected by environmental factors as would be the case for morphological 

characterisation (Kurose et al., 2015).  
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For consistency in phylogenetic analyses of fungi the ITS region is recommended since it 

is considered the barcoding gene for fungi (Crous et al., 2014). However, one single locus may 

only provide a preliminary perspective, and will not necessarily show interspecific differentiation 

(Leavitt et al., 2015). The use of multiple independent loci under the Genealogical Concordance 

Phylogenetic Species Recognition proposed by Taylor et al., (2000) has been recommended to 

increase the accuracy of species differentiation (Leavitt et al., 2015). Most of the Stemphylium 

species recorded as plant pathogens in Japan have been identified by using molecular phylogenetic 

analysis of four loci (rDNA-ITS, EF-1a, gpd, and vmaA-vpsA) with the addition of morphologic 

studies (Kurose et al., 2015).  

Molecular phylogenetic analyses with the barcoding loci ITS and the conserved gene region 

gpd combined have been consistently used for the study of Stemphylium genus. (Camara et al., 

2002; Wang et al., 2010). The use of these methods has not related well with morphological 

methods in very closely related species such as S. vesicarium and S. herbarum (Camara et al., 

2002). Either morphology overlaps or molecular data shows identical DNA sequences. 

Stemphylium morphological traits may have been affected by evolutionary convergence as pointed 

out by Wang et al. (2010).    

Thus to identify, describe and infer phylogenetic relationships of different species of 

Stemphylium it is essential to employ combined analyses of morphological and molecular data 

(Wang et al., 2010). The observation of overlapping morphology of conidia in this study 

highlighted that morphologic studies were not a helpful tool to differentiate two closely related 

Stemphylium spp. considering that the isolates in Clusters A and B shared similar conidial features. 

Future studies may have to include the description of additional structures such as conidiophores 

and sexual structures such as the ascus and the ascospore.   

The statistical methods (NJ, ML and UPGMA) used for the construction of phylogenetic 

trees provides support of clades, but does not determine the branch representing a separate species. 

Misrepresentation of P. tarda EGS 08-069 as an ex-type species, and identical sequences of ITS 

and gpd for P. herbarum EGS 36-138, S. vesicarium EGS 37-067 and S. alfalfa EGS 36-088 

originally identified as separate species by morphology confirm the imprecision of the 

morphological species concept for fungal species without support by molecular data as pointed out 

by Crous et al., (2014).  
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To conclude, in this study yield loss due to stemphylium blight in lentil was not 

demonstrated, most likely due to the amount of background inoculum that resulted in diseased 

control treatments that were expected to be free of stemphylium blight. As proposed earlier, future 

work should focus on reducing, or if possible eliminating, the background inoculum so that 

uninoculated treatments are disease-free. Only then will it be possible to determine the real effect 

of stemphylium blight and develop economic thresholds for disease management intervention. This 

may be achieved through a combination of inoculation and antifungal protection; however, 

secondary effects of the fungicides on plant development and seed yield in uninoculated treatments 

would have to be assessed as well (Cooke, 2006).  

Results here also suggest the need for studies of epidemics of stemphylium blight under 

field conditions including the identification of causal species of Stemphylium / Pleospora and their 

respective contributions to an epidemic. Assessment of the effect of the pathogens on different 

lentil genotypes also warrants further research. Such studies may confirm the importance of early-

and mid-flowering infection for potential yield loss.  

The species S. botryosum as the causal pathogen of stemphylium blight in lentil crop as 

reported by other authors was confirmed as one of two possible species observed in this study. 

However, an extensive revision of the genus Stemphylium based on detailed morphological 

description potentially including the sexual state and molecular phylogenetic analyses based on 

conserved genic regions that can delineate closely related species is required before the causal 

agent(s) of stemphylium blight in Saskatchewan lentil can be identified. 
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APPENDICES 
  

Appendix 1: Mass spore production procedure of Stemphylium spp. used to produce inoculum 

for greenhouse and for field experiments  

 

Isolate SB19 was grown in a 90 mm Petri dish with V8-PDA with an average nutrient 

concentration [V8-PDA(av)] (10 g Potato Dextrose Agar, 10 g agar, 3 g Carbonate calcium CaCO3, 

150 ml V8 vegetable juice, 850 ml di-ionized water, and 1 ml of Chloramphenicol solution per 

1000 ml of medium to make 1000 ml of medium) and incubated under dark conditions on the bench 

top at a temperature of approximately 25oC for 7 to 10 days, at which point more than 80% of the 

plate was covered with mycelia and spores.   

Baking aluminum trays of 33 x 45 x 2 cm were prepare for the second step in the procedure 

by covering the inside with two layers of cheesecloth that was taped onto the four sides. Then the 

tray was covered with a second tray as a lid, which was taped to the bottom tray, before being 

autoclaved at 120 psi for 30 min on the liquid cycle, and being left to cool on the bench top. 

In the meantime 700 ml of V8-PDA with high nutrient concentration [V8-PDA(hi)] (175 

ml of V8 juice, 3.5 g CaCO3, 10.5 g PDA, 5.11 g agar, 1.75 g MgSO4, 1 ml FeCl3 solution, 560 

ml di-ionized water, and 1 ml of chloramphenicol per each 100 ml of medium) was prepared, and 

poured onto a sterile tray that was then covered again with the second sterile tray serving as a lid, 

and left overnight to cool. To inoculated trays, two Petri dishes of SB19 were washed with 5 mL 

of sterile di-ionized water per dish, using a bent glass rod to remove all spores and mycelia. Spores 

from both plates were combined with 15 ml of di-ionized water to get a volume of 25 mL of spore 

suspension. The suspension was poured onto the V8-PDA (hi) in the baking trays and spread with 

a bent glass rod. Trays were wrapped with plastic wrap carefully avoiding touching the medium 

with the plastic wrap, which was taped to all four sides of the tray. The trays were placed under 

continuously light on the bench top at room temperature (about 25oC) for 20 days. After 20 days 

or until the whole tray was covered with spores and mycelia, trays were unwrapped and placed 

under dark conditions inside a running biosafety cabinet for two to three days to dry. Once dry, the 

inside of trays was scrapped with a sterile wire brush to loosen spores that were collected with a 

sterile filter paper serving as a ‘spoon’, and using a vacuum with a filter paper. Spores collected on 
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the same day were mixed and stored together in a glass beaker in an incubator at 35oC for 24 h to 

remove moisture. They were weighed, and stored in a sterile plastic bottle at room temperature 

(about 25oC). 
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Appendix 2: Pre-seeding and post-seeding chemical treatments and agronomic management of the 

field experiments at the Seed Farm in 2013 and 2014 and Preston Avenue in 2014. 
Chemical treatments and 

agronomic management 

2013 2014 

Seed Farm Seed Farm Preston field 

Pre-seeding herbicide 06- May, 

Edge® a.i. Ethalfluralin 5% 

(17kg/ha) 

No application No application 

Post-seeding herbicide 23-May, Roundup® a.i. 

glyphosate 48.8%  

(1L/acre)+ 

AimEC® a.i. Carfentrazone-

ethyl (30mL/acre) 

No application 21-May, Roundup® a.i. 

glyphosate 48.8%  

(1L/acre)+ 

AimEC® a.i. Carfentrazone-

ethyl (30mL/acre) 

Pre harvest chemical 13-August, 

Reglone® a.i. Diquat ion 

240g per L (1L/acre) 

12-August, 

Reglone® a.i. Diquat ion 

240g per L (1L/acre) 

12-August, 

Reglone® a.i. Diquat ion 

240g per L (1L/acre) 

Pesticides chemical 12-July, Orthene® a.i. 

Acefate 75% (750g/ha) 

No application No application 

Seeding date 17-May, 540seeds/plot   13-May, 540seeds/plot   13-May, 540seeds/plot   

Irrigation system set up 31-May (14 d.a.s.) 02-June 02-June 

Low tunnels set up 11-June (25 d.a.s.) 11-June (29 d.a.s.) 11-June (29 d.a.s.) 

Field cleaning (weeding) once a week every two weeks 3 weeding during all cycle  

Bird net set up 08-August  07-August 08-August 

Harvest 20-August 19-August 19-August 

d.a.s: days after seeding. 



80 

 

Appendix 3: Temperatures and relative humidity collected from non-covered and covered 

treatments with green-polyethylene and Novagryl® at the Seed Farm field experiment in 2013, and 

from non-covered and covered treatments with green-polyethylene at the Seed Farm and Preston 

Avenue field experiments in 2014. 
Site / 
year 

Season oC Un-covered Green-polyethylene Novagryl® 
RH 
(%) 

Max Min Average Max Min Average Max Min Average 

 
 
 
Seed 
Farm 
2013 

May Temp 36.2 12.6 19.7 34.0 16.4 23.1 32.9 16.5 22.5 
HR 100.0 30.3 84.8 100.0 67.7 94.7 100.0 60.9 91.0 

June Temp 25.2 12.8 16.1 19.0 14.9 17.3 21.3 14.1 17.9 
HR 100.0 40.6 97.2 100.0 100.0 100.0 100.0 97.3 99.8 

July Temp 24.0 13.1 17.7 26.0 13.3 19.0 24.9 13.3 18.3 
HR 100.0 64.6 85.5 100.0 69.2 92.6 100.0 70.5 93.0 

August Temp 24.9 9.7 16.8 28.7 11.8 17.6 30.7 11.7 18.5 
HR 100.0 60.3 86.2 100.0 38.3 96.2 100.0 47.3 93.3 

            

 
 
 
Seed 
Farm 
2014 

May Temp 30.4 12.1 20.9 29.8 14.7 21.4 . . . 
 HR 100.0 51.7 84.0 100.0 75.0 94.7 . . . 

June Temp 30.2 12.0 20.2 31.2 12.8 20.7 . . . 
 HR 100.0 42.8 82.4 100.0 68.4 92.5 . . . 

July Temp 28.5 12.5 21.3 31.4 13.5 21.1 . . . 
 HR 100.0 37.7 73.6 100.0 58.7 89.4 . . . 

August Temp 29.8 13.1 20.7 29.3 13.5 20.6 . . . 
 HR 98.9 41.6 75.6 100.0 68.4 89.7 . . . 

            

 
 
 
Preston 
Ave. 
2014 

May Temp 29.6 11.7 21.0 37.6 13.9 22.5 . . . 
 HR 100.0 47.4 82.5 100.0 54.5 88.5 . . . 

June Temp 28.8 11.5 20.3 40.3 12.1 22.2 . . . 
 HR 100.0 45.3 82.3 100.0 45.3 86.7 . . . 

July Temp 29.1 12.4 21.2 37.4 12.9 23.2 . . . 
 HR 100.0 45.0 75.2 100.0 47.4 83.2 . . . 

August Temp 30.4 13.2 20.8 37.0 12.2 22.4 . . . 
 HR 100.0 43.4 76.1 100.0 53.8 86.2 . . . 

Temp: Temperature in Celsius degrees; HR: Relative humidity in percentage; LST: Field Laboratory. 
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Appendix 4: Results of the assessment of disease severity, yield loss and seed quality in field 

experiments at the Seed Farm in 2013 and 2014, and at Preston Avenue in 2014 (individual 

analyses). 

 

 A4.1. Analysis of the effect of low tunnels compared with non-covered treatments in the field 

experiments at the Seed Farm in 2013, Seed Farm in 2014, and Preston Avenue in 2014. 

 

A4.1.1. Analysis of variance, linear contrast analysis, and least square estimates of stemphylium 

blight severity in low tunnels and in the non-covered treatments in field experiment at the Seed 

Farm at Saskatoon in 2013. 

Type 3 Tests of Fixed Effects 
Effect Num DF Den DF F Value Pr > F 

Covering 2 31.2 78.48 <.0001 
Inoculation timing 4 36.1 17.71 <.0001 
Covering *inoculation timing 8 31.2 3.43 0.0061 
 

Contrasts 
Label Num DF Den DF F Value Pr > F 
covered vs non-covered 1 36.3 156.91 <.0001 

 

Least Square Estimates 
Effect Covering  Estimate Standard 

Error 
DF t Value Pr > |t| 

Covering Green polyethylene 1081.82 63.0324 6.65 17.16 <.0001 
Covering  Novagryl 946.52 55.973 4.5 16.91 <.0001 
Covering  Non-covered 562.75 52.5204 3.73 10.71 0.0006 
 

A4.1.2. Analysis of variance, linear contrast analysis, and least square estimates of stemphylium 

blight severity in low tunnels and in the non-covered treatments in field experiment at the Seed 

Farm at Saskatoon in 2014. 

 

 

Type 3 Tests of Fixed Effects 
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Effect Num DF Den DF F Value Pr > F 
Covering 1 18.3 136.13 <.0001 
Inoculation timing 4 7.24 4.73 0.0347 
Covering *inoculation timing 4 7.24 6.38 0.0162 

 

Contrasts 
Label Num DF Den DF F Value Pr > F 
covered vs non-covered 1 18.3 136.13 <.0001 

 

Least Square Estimates 
Effect Covering  Estimate Standard 

Error 
DF t Value Pr > |t| 

Covering Green polyethylene 2059.4 47.4723 18.3 43.38 <.0001 
Covering  Non-covered 1276.1 47.4723 18.3 26.88 <.0001 

 

 

A4.1.3. Analysis of variance, linear contrast analysis, and least square estimates of stemphylium 

blight severity in low tunnels and in the non-covered treatments in field experiment at Preston 

Avenue at Saskatoon in 2014. 

Type 3 Tests of Fixed Effects 
Effect Num DF Den DF F Value Pr > F 

Covering 1 23.3 63.69 <.0001 
Inoculation timing 4 8.86 6.35 0.0107 
Covering *inoculation timing 4 8.86 2.91 0.0855 

 

Contrasts 
Label Num DF Den DF F Value Pr > F 
covered vs non-covered 1 23.3 63.69 <.0001 

 

Least Square Estimates 
Effect Covering  Estimate Standard 

Error 
DF t Value Pr > |t| 

Covering Green polyethylene 1710.58 106.99 3.56 15.99 0.0002 
Covering  Non-covered 1032.17 106.99 3.56 9.65 0.0011 
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A4.1.4. Analysis of variance, linear contrast analysis, and least square estimates of seed yield in 

low tunnels and in the non-covered treatments in field experiment at the Seed Farm at Saskatoon 

in 2013. 

Type 3 Tests of Fixed Effects 
Effect Num DF Den DF F Value Pr > F 

Covering 2 10.1 218.54 <.0001 
Inoculation timing 4 10.1 1.18 0.3754 
Covering *inoculation timing 8 10.1 2.6 0.0783 
 

Contrasts 
Label Num DF Den DF F Value Pr > F 
covered vs non-covered 1 10.1 436.87 <.0001 

 

 

Least Square Estimates 
Effect Covering  Estimate Standard 

Error 
DF t Value Pr > |t| 

Covering Green polyethylene 1357.17 49.3038 10.1 27.53 <.0001 
Covering  Novagryl 1389.45 49.3038 10.1 28.18 <.0001 
Covering  Non-covered 2635.43 49.3038 10.1 53.45 <.0001 
 

 

 

A4.1.5. Analysis of variance, linear contrast analysis, and least square estimates of seed yield in 

low tunnels and in the non-covered treatments in field experiment at the Seed Farm at Saskatoon 

in 2014. 

 

Type 3 Tests of Fixed Effects 
Effect Num DF Den DF F Value Pr > F 

Covering 1 30 113.08 <.0001 
Inoculation timing 4 30 0.57 0.6858 
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Covering *inoculation timing 4 30 0.7 0.5962 

 

Contrasts 
Label Num DF Den DF F Value Pr > F 
covered vs non-covered 1 30 113.08 <.0001 

 

Least Square Estimates 
Effect Covering  Estimate Standard 

Error 
DF t Value Pr > |t| 

Covering Green polyethylene 2152.08 121.35 30 17.73 <.0001 
Covering Non-covered 3977.08 121.35 30 32.77 <.0001 

 

 

 

 

A4.1.6. Analysis of variance, linear contrast analysis, and least square estimates of seed yield in 

low tunnels and in the non-covered treatments in field experiment at the Preston Avenue at 

Saskatoon in 2014. 

 

Type 3 Tests of Fixed Effects 
Effect Num DF Den DF F Value Pr > F 

Covering 1 15.3 3.54 0.0792 
Inoculation timing 4 15.3 0.28 0.8858 
Covering *inoculation timing 4 15.3 0.41 0.8017 

 

Contrasts 
Label Num DF Den DF F Value Pr > F 
covered vs non-covered 1 15.3 3.54 0.0792 

 

Least Square Estimates 
Effect Covering  Estimate Standard 

Error 
DF t Value Pr > |t| 

Covering Green polyethylene 7.3716 0.07143 2.92 103.2 <.0001 
Covering  Non-covered 7.6604 0.1629 17.7 47.03 <.0001 
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A4.1.7. Analysis of variance, linear contrast analysis, and least square estimates of thousand seed 

weight in low tunnels and in the non-covered treatments in field experiment at the Seed Farm at 

Saskatoon in 2013. 

Type 3 Tests of Fixed Effects 
Effect Num DF Den DF F Value Pr > F 

Covering 2 34.7 14.93 <.0001 
Inoculation timing 4 35.9 1.87 0.1377 
Covering *inoculation timing 8 34.7 0.5 0.8509 
 

Contrasts 
Label Num DF Den DF F Value Pr > F 
covered vs non-covered 1 41.9 9.67 0.0034 

 

Least Square Estimates 
Effect Covering  Estimate Standard 

Error 
DF t Value Pr > |t| 

Covering Green polyethylene 29.27 0.3035 13.2 96.45 <.0001 
Covering  Novagryl 27.37 0.3037 13.6 90.12 <.0001 
Covering  Non-covered 29.12 0.1559 5.49 186.73 <.0001 
 

A4.1.8. Analysis of variance, linear contrast analysis, and least square estimates of thousand seed 

weight in low tunnels and in the non-covered treatments in field experiment at the Seed Farm at 

Saskatoon in 2014. 

Type 3 Tests of Fixed Effects 
Effect Num DF Den DF F Value Pr > F 

Covering 1 27 12.21 0.0017 
Inoculation timing 4 27 0.77 0.5526 
Covering *inoculation timing 4 27 2.54 0.0631 

 

Contrasts 
Label Num DF Den DF F Value Pr > F 
covered vs non-covered 1 27 12.21 0.0017 
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Least Square Estimates 
Effect Covering  Estimate Standard 

Error 
DF t Value Pr > |t| 

Covering Green polyethylene 25.1675 0.5282 7.4 47.65 <.0001 
Covering Non-covered 27.43 0.5282 7.4 51.94 <.0001 

 

 

A4.1.9. Analysis of variance and linear contrast analysis of thousand seed weight in low tunnels 

and in the non-covered treatments in field experiment at the Preston Avenue at Saskatoon in 2014. 

Type 3 Tests of Fixed Effects 
Effect Num DF Den DF F Value Pr > F 

Covering 1 27 3.56 0.0699 
Inoculation timing 4 27 2.01 0.121 
Covering *inoculation timing 4 27 1.08 0.3871 

 

Contrasts 
Label Num DF Den DF F Value Pr > F 
covered vs non-covered 1 27 3.56 0.0699 

 

A4.1.10. Analysis of variance, linear contrast analysis, and least square estimates of percentage of 

seed infected with Stemphylium spp.  in CDC Robin harvested in low tunnels and in the non-

covered treatments in field experiment at the Seed Farm at Saskatoon in 2013. 

Type 3 Tests of Fixed Effects 
Effect Num DF Den DF F Value Pr > F 

Covering 2 26.9 4.08 0.0284 
Inoculation timing 4 24 10.19 <.0001 
Covering *inoculation timing 8 24 2.54 0.0369 
 

Contrasts 
Label Num DF Den DF F Value Pr > F 
covered vs non-covered 1 26.9 7.53 0.0107 
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Least Square Estimates 
Effect Covering  Estimate Standard 

Error 
DF t Value Pr > |t| 

Covering Green polyethylene 2.35 0.3571 26.9 6.58 <.0001 
Covering  Novagryl 1.95 0.3571 26.9 5.46 <.0001 
Covering  Non-covered 0.95 0.3571 26.9 2.66 0.013 
 

 

A4.1.11. Analysis of variance, linear contrast analysis, and least square estimates of percentage of 

seed infected with Stemphylium spp.  in CDC Robin harvested in low tunnels and in the non-

covered treatments in field experiment at the Seed Farm at Saskatoon in 2014. 

Type 3 Tests of Fixed Effects 
Effect Num DF Den DF F Value Pr > F 

Covering 1 25.9 5.32 0.0294 
Inoculation timing 4 25.9 2.18 0.0993 
Covering *inoculation timing 4 25.9 0.76 0.5584 

 

Contrasts 
Label Num DF Den DF F Value Pr > F 
covered vs non-covered 1 25.9 5.32 0.0294 

 

Least Square Estimates 
Effect Covering  Estimate Standard 

Error 
DF t Value Pr > |t| 

Covering Green polyethylene 1.7 0.3082 15 5.52 <.0001 
Covering  Non-covered 0.85 0.2021 15 4.21 0.0008 

 

A4.1.12. Analysis of variance, linear contrast analysis, and least square estimates of percentage of 

seed infected with Stemphylium spp.  in CDC Robin harvested in low tunnels and in the non-

covered treatments in field experiment at the Preston Avenue at Saskatoon in 2014. 

Type 3 Tests of Fixed Effects 
Effect Num DF Den DF F Value Pr > F 

Covering 1 15 25.26 0.0002 
Inoculation timing 4 5.3 3.87 0.0798 
Covering *inoculation timing 4 5.3 4.69 0.0556 
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Contrasts 
Label Num DF Den DF F Value Pr > F 
covered vs non-covered 1 15 25.26 0.0002 

 

Least Square Estimates 
Effect Covering  Estimate Standard 

Error 
DF t Value Pr > |t| 

Covering Green polyethylene 2.6 0.4704 12.9 5.53 <.0001 
Covering  Non-covered 0.15 0.2424 29 0.62 0.5408 

 

A4.1.13. Analysis of variance and linear contrast analysis of percentage of staining seed in CDC 

Robin harvested in low tunnels and in the non-covered treatments in field experiment at the Seed 

Farm at Saskatoon in 2013. 

Type 3 Tests of Fixed Effects 
Effect Num DF Den DF F Value Pr > F 

Covering 1 30 0.9 0.3499 
Inoculation timing 4 30 2.38 0.0738 
Covering *inoculation timing 4 30 0.18 0.9484 
 

Contrasts 
Label Num DF Den DF F Value Pr > F 
covered vs non-covered 1 30 0.9 0.3499 

 

 

A4.1.14. Analysis of variance and linear contrast analysis of percentage of staining seed in CDC 

Robin harvested in low tunnels and in the non-covered treatments in field experiment at the Seed 

Farm at Saskatoon in 2014. 

Type 3 Tests of Fixed Effects 
Effect Num DF Den DF F Value Pr > F 

Covering 1 27 1.43 0.2416 
Inoculation timing 4 27 2.13 0.1048 
Covering *inoculation timing 4 27 1.33 0.2839 
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Contrasts 
Label Num DF Den DF F Value Pr > F 
covered vs non-covered 1 27 1.43 0.2416 

A4.1.15. Analysis of variance and linear contrast analysis of percentage of staining seed in CDC 

Robin harvested in low tunnels and in the non-covered treatments in field experiment at the Preston 

Avenue at Saskatoon in 2014. 

Type 3 Tests of Fixed Effects 
Effect Num DF Den DF F Value Pr > F 

Covering 1 15.8 1.68 0.2131 
Inoculation timing 4 15.8 5.39 0.0062 
Covering *inoculation timing 4 15.8 0.87 0.5059 

 

Contrasts 
Label Num DF Den DF F Value Pr > F 
covered vs non-covered 1 15.8 1.68 0.2131 

 

 

A4.1.16. Analysis of variance, linear contrast analysis, and least square estimates of seed diameter 

of CDC Robin harvested in low tunnels and in the non-covered treatments in field experiment at 

the Seed Farm at Saskatoon in 2013. 

Type 3 Tests of Fixed Effects 
Effect Num DF Den DF F Value Pr > F 

Covering 2 31.1 49.7 <.0001 
Inoculation timing 4 31.2 0.61 0.656 
Covering *inoculation timing 8 31.1 0.59 0.782 
 

Contrasts 
Label Num DF Den DF F Value Pr > F 
covered vs non-covered 1 40.3 83.53 <.0001 

 

 

 

Least Square Estimates 
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Effect Covering  Estimate Standard 
Error 

DF t Value Pr > |t| 

Covering Green polyethylene 3.978 0.01998 13.1 199.12 <.0001 
Covering  Novagryl 3.866 0.0205 16.8 188.54 <.0001 
Covering  Non-covered 4.062 0.0108 3.33 376.22 <.0001 
 

 

A4.1.17. Analysis of variance, linear contrast analysis, and least square estimates of seed diameter 

of CDC Robin harvested in low tunnels and in the non-covered treatments in field experiment at 

the Seed Farm at Saskatoon in 2014. 

Type 3 Tests of Fixed Effects 
Effect Num DF Den DF F Value Pr > F 

Covering 1 27 21.05 <.0001 
Inoculation timing 4 27 0.41 0.7996 
Covering *inoculation timing 4 27 1.33 0.2831 

 

Contrasts 
Label Num DF Den DF F Value Pr > F 
covered vs non-covered 1 27 21.05 <.0001 

 

Least Square Estimates 
Effect Covering  Estimate Standard 

Error 
DF t Value Pr > |t| 

Covering Green polyethylene 3.8385 0.03509 5.05 109.39 <.0001 
Covering  Non-covered 3.994 0.03509 5.05 113.82 <.0001 

 

 

 

A4.1.18. Analysis of variance, linear contrast analysis, and least square estimates of seed diameter 

of CDC Robin harvested in low tunnels and in the non-covered treatments in field experiment at 

the Preston Avenue at Saskatoon in 2014. 

Type 3 Tests of Fixed Effects 
Effect Num DF Den DF F Value Pr > F 

Covering 1 27 24.28 <.0001 
Inoculation timing 4 27 1.21 0.3283 
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Covering *inoculation timing 4 27 0.54 0.705 

 

Contrasts 
Label Num DF Den DF F Value Pr > F 
covered vs non-covered 1 27 24.28 <.0001 

 

Least Square Estimates 
Effect Covering  Estimate Standard 

Error 
DF t Value Pr > |t| 

Covering Green polyethylene 3.6625 0.04051 3.8 90.41 <.0001 
Covering  Non-covered 3.796 0.04051 3.8 93.71 <.0001 

 

 

A4.1.19. Analysis of variance, linear contrast analysis, and least square estimates of seed thickness 

of CDC Robin harvested in low tunnels and in the non-covered treatments in field experiment at 

the Seed Farm at Saskatoon in 2013. 

Type 3 Tests of Fixed Effects 
Effect Num DF Den DF F Value Pr > F 

Covering 2 5.47 26.37 0.0016 
Inoculation timing 4 5.47 0.68 0.6325 
Covering *inoculation timing 8 5.47 0.64 0.7291 
 

Contrasts 
Label Num DF Den DF F Value Pr > F 
covered vs non-covered 1 5.47 31.02 0.0019 

 

Least Square Estimates 
Effect Covering  Estimate Standard 

Error 
DF t Value Pr > |t| 

Covering Green polyethylene 2.4259 0.00796 2.68 304.62 <.0001 
Covering  Novagryl 2.3818 0.00796 2.68 299.09 <.0001 
Covering  Non-covered 2.3583 0.00796 2.68 296.13 <.0001 
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A4.1.20. Analysis of variance, linear contrast analysis, and least square estimates of seed thickness 

of CDC Robin harvested in low tunnels and in the non-covered treatments in field experiment at 

the Seed Farm at Saskatoon in 2014. 

Type 3 Tests of Fixed Effects 
Effect Num DF Den DF F Value Pr > F 

Covering 1 27 11.79 0.0019 
Inoculation timing 4 27 0.09 0.9848 
Covering *inoculation timing 4 27 1.55 0.2174 

 

Contrasts 
Label Num DF Den DF F Value Pr > F 
covered vs non-covered 1 27 11.79 0.0019 

 

Least Square Estimates 
Effect Covering  Estimate Standard 

Error 
DF t Value Pr > |t| 

Covering Green polyethylene 2.0715 0.0288 5.14 71.92 <.0001 
Covering  Non-covered 2.1685 0.0288 5.14 75.28 <.0001 

 

 

A4.1.21. Analysis of variance, linear contrast analysis, and least square estimates of seed thickness 

of CDC Robin harvested in low tunnels and in the non-covered treatments in field experiment at 

the Preston Avenue at Saskatoon in 2014. 

Type 3 Tests of Fixed Effects 
Effect Num DF Den DF F Value Pr > F 

Covering 1 27 24.45 <.0001 
Inoculation timing 4 27 2.03 0.1183 
Covering *inoculation timing 4 27 0.36 0.8344 

 

Contrasts 
Label Num DF Den DF F Value Pr > F 
covered vs non-covered 1 27 24.45 <.0001 
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Least Square Estimates 
Effect Covering  Estimate Standard 

Error 
DF t Value Pr > |t| 

Covering Green polyethylene 1.988 0.02477 4.85 80.25 <.0001 
Covering  Non-covered 2.102 0.02477 4.85 84.85 <.0001 

 

 

 

 

A4.2. Analysis of disease development in low tunnels in field experiments at the Seed Farm 

in 2013 and 2014, and at Preston Avenue in 2014. 

A4.2.1.  Analysis of variance and least square estimates of area under the disease progress curve 

(AUDPC) of lentil cultivar CDC Robin grown in green polyethylene low tunnels in field 

experiments at the Seed Farm at Saskatoon in 2013 and inoculated with Stemphylium botryosum 

field isolate SB19 at 1 x 103 conidia mL-1 at four different growth stages. 

 

Type 3 Tests of Fixed Effects 
Effect Num DF Den DF F Value Pr > F 

Inoculation timing (stage) 4 11.2 29.37 <.0001 
 

Least Square Estimates 
Effect Inoculation timing 

(stage)  
Estimate Standard 

Error 
DF t Value Pr > |t| 

stage Early-flower 1229.88 67.3707 6.09 18.26 <.0001 
stage Mid-flower 900.19 70.9594 6.47 12.69 <.0001 
stage Control 750.25 51.4009 5.05 14.6 <.0001 
stage Podding 912.69 87.8595 6.57 10.39 <.0001 
stage Seedling 1277.88 36.1973 5.04 35.3 <.0001 
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A4.2.2. Analysis of variance and linear contrast analysis of area under the disease progress curve 

(AUDPC) of lentil cultivar CDC Robin grown in green polyethylene low tunnels in field 

experiments at the Seed Farm at Saskatoon in 2014 and inoculated with Stemphylium botryosum 

field isolate SB19 at 1 x 103 conidia mL-1 at four different growth stages. 

 

Type 3 Tests of Fixed Effects 
Effect Num DF Den DF F Value Pr > F 

Inoculation timing (stage) 3 1 5.50 0.3014 
 

 

 

Contrasts 
Label Num DF Den DF F Value Pr > F 
Inoculated vs un-inoculated 1 2.3 10.78 0.0676 

 

 

 

 

A4.2.3. Analysis of variance, linear contrast analysis and least square estimates of  area under the 

disease progress curve (AUDPC) of lentil cultivar CDC Robin grown in green polyethylene low 

tunnels in field experiments at the Preston Avenue at Saskatoon in 2014 and inoculated with 

Stemphylium botryosum field isolate SB19 at 1 x 103 conidia mL-1 at four different growth stages. 

 
Type 3 Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 
Inoculation timing (stage) 4 5.65 25.22 0.0009 
 

Contrasts 
Label Num DF Den DF F Value Pr > F 
covered vs non-covered 1 15 69.25 <.0001 

 

Least Square Estimates 
Effect Inoculation timing 

(stage)  
Estimate Standard 

Error 
DF t Value Pr > |t| 

stage Early-flower 1543.69 35.7836 4.86 43.14 <.0001 
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stage Mid-flower 1848.75 145.12 3.43 12.74 0.0005 
stage Control 1250.5 42.065 13.4 29.73 <.0001 
stage Podding 1927.41 61.8865 15 31.14 <.0001 
stage Seedling 1982.56 150.97 3.27 13.13 0.0006 

 

Figure A4.2.1. Area under the disease progress curve (AUDPC) of lentil cultivar CDC Robin 
grown in green polyethylene low tunnels in field experiments at the Seed Farm at Saskatoon in 
2013 and 2014, and at Preston Avenue in 2014 and inoculated with Stemphylium botryosum field 
isolate SB19 at 1 x 103 conidia mL-1 at four different growth stages. Different letters within the 
same color column are significantly different. Separation of means by Fisher’s LSD (P < 0.05). 
 

 
 
 

 

A4.3. Analysis of lentil seed yields harvested from low tunnels in field experiments at the Seed 

Farm in 2013and 2014, and at Preston Avenue in 2014. 

 

 A4.3.1. Analysis of variance and linear contrast analysis of seed yield of lentil cultivar CDC Robin 

grown in green polyethylene low tunnels in field experiments at the Seed Farm at Saskatoon in 
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2013 and inoculated with Stemphylium botryosum field isolate SB19 at 1 x 103 conidia mL-1 at four 

different growth stages. 

Type 3 Tests of Fixed Effects 
Effect Num DF Den DF F Value Pr > F 

Inoculation timing (stage) 4 3.41 13.91 0.02020 
 

Contrasts 
Label Num DF Den DF F Value Pr > F 
covered vs non-covered 1 3.41 7.67 0.0602 

 

 

A4.3.2. Analysis of variance and linear contrast analysis of seed yield of lentil cultivar CDC Robin 

grown in green polyethylene low tunnels in field experiments at the Seed Farm at Saskatoon in 

2014 and inoculated with Stemphylium botryosum field isolate SB19 at 1 x 103 conidia mL-1 at four 

different growth stages. 

 

Type 3 Tests of Fixed Effects 
Effect Num DF Den DF F Value Pr > F 

Inoculation timing (stage) 4 15 0.56 0.6951 
 

Contrasts 
Label Num DF Den DF F Value Pr > F 
covered vs non-covered 1 15 0.96 0.3437 

 

 

A4.3.3. Analysis of variance and linear contrast analysis of seed yield of lentil cultivar CDC Robin 

grown in green polyethylene low tunnels in field experiments at the Preston Avenue at Saskatoon 

in 2014 and inoculated with Stemphylium botryosum field isolate SB19 at 1 x 103 conidia mL-1 at 

four different growth stages. 

Type 3 Tests of Fixed Effects 
Effect Num DF Den DF F Value Pr > F 

Inoculation timing (stage) 4 1 0.94 0.6394 
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Contrasts 
Label Num DF Den DF F Value Pr > F 
covered vs non-covered 1 10 1.53 0.2424 

 

 

Figure A4.3.1. Seed yields of lentil cultivar CDC Robin grown in green polyethylene low tunnels 
in field experiments at the Seed Farm at Saskatoon in 2013 and 2014 and Preston Avenue in 2014 
and inoculated with Stemphylium botryosum field isolate SB19 at 1 x 103 conidia mL-1 at four 
different growth stages. Different letters within the same color column are significantly different. 
Separation of means by Fisher’s LSD (P < 0.05). 
 

 
 

 

 

A4.4. Analysis of thousand seed weight of seed harvested from low tunnels in field 

experiments at the Seed Farm in 2013 and 2014, and at Preston Avenue in 2014. 
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the Seed Farm at Saskatoon in 2013 and inoculated with Stemphylium botryosum field isolate SB19 

at 1 x 103 conidia mL-1 at four different growth stages. 

 

Type 3 Tests of Fixed Effects 
Effect Num DF Den DF F Value Pr > F 

Inoculation timing (stage) 4 30 1.35 0.2735 
 

 

Contrasts 
Label Num DF Den DF F Value Pr > F 
covered vs non-covered 1 30 1.72 0.2000 

 

 

A4.4.2. Analysis of variance and linear contrast analysis of thousand seed weight (TSW) harvested 

from lentil cultivar CDC Robin grown in green polyethylene low tunnels in field experiments at 

the Seed Farm at Saskatoon in 2014 and inoculated with Stemphylium botryosum field isolate SB19 

at 1 x 103 conidia mL-1 at four different growth stages. 

 

Type 3 Tests of Fixed Effects 
Effect Num DF Den DF F Value Pr > F 

Inoculation timing (stage) 4 15 2.25 0.1128 
 

Contrasts 
Label Num DF Den DF F Value Pr > F 
covered vs non-covered 1 15 8.01 0.0127 

 

 

A4.4.3. Analysis of variance and linear contrast analysis of thousand seed weight (TSW) harvested 

from lentil cultivar CDC Robin grown in green polyethylene low tunnels in field experiments at 

the Preston Avenue at Saskatoon in 2014 and inoculated with Stemphylium botryosum field isolate 

SB19 at 1 x 103 conidia mL-1 at four different growth stages. 

Type 3 Tests of Fixed Effects 
Effect Num DF Den DF F Value Pr > F 
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Inoculation timing (stage) 4 15 1.30 0.3157 
 

Contrasts 
Label Num DF Den DF F Value Pr > F 
covered vs non-covered 1 15 1.03 0.3266 

 

Figure A4.4.1. Thousand seed weight (TSW) harvested from lentil cultivar CDC Robin grown in 
green polyethylene low tunnels in field experiments at Saskatoon at the Seed Farm in 2013 and 
2014, and at Preston Avenue in 2014 and inoculated with Stemphylium botryosum field isolate 
SB19 at 1 x 103 conidia mL-1 at four different growth stages.  
 

 
 
 
 
A4.5. Analysis of percentage of seed infected with Stemphylium spp. in seeds harvested from 

low tunnels in the field experiments at the Seed Farm in 2013 and 2014, and at Preston 

Avenue in 2014. 

A4.5.1. Analysis of variance, linear contrast analysis and least square estimates of percentage of 
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inoculated with Stemphylium botryosum field isolate SB19 at 1 x 103 conidia mL-1 at four different 

growth stages. 

 

Type 3 Tests of Fixed Effects 
Effect Num DF Den DF F Value Pr > F 

Inoculation timing (stage) 4 15.5 6.18 0.0035 
 

 

 

Contrasts 
Label Num DF Den DF F Value Pr > F 
covered vs non-covered 1 21.1 21.49 0.0001 

 

Least Square Estimates 
Effect Inoculation timing 

(stage)  
Estimate Standard 

Error 
DF t Value Pr > |t| 

stage Early-flower 2.35 0.4072 17.2 5.77 <.0001 
stage Mid-flower 1.95 0.4072 17.2 4.79 0.0002 
stage Control 5 1 6 5 0.0025 
stage Podding 1.75 0.3953 6 4.43 0.0044 
stage Seedling 0.5 0.27 6 1.85 0.1135 

 

 

A4.5.2. Analysis of variance and linear contrast analysis of percentage of seed infected by 

Stemphylium spp. in seeds harvested from lentil cultivar CDC Robin grown in green polyethylene 

low tunnels in field experiments at the Seed Farm at Saskatoon in 2014 and inoculated with 

Stemphylium botryosum field isolate SB19 at 1 x 103 conidia mL-1 at four different growth stages. 

 

Type 3 Tests of Fixed Effects 
Effect Num DF Den DF F Value Pr > F 

Inoculation timing (stage) 4 15 1.80 0.1809 
 

Contrasts 
Label Num DF Den DF F Value Pr > F 
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covered vs non-covered 1 15 3.79 0.0706 

 

A4.5.3. Analysis of variance, linear contrast analysis and least square estimates of percentage of 

seed infected by Stemphylium spp. in seeds harvested from lentil cultivar CDC Robin grown in 

green polyethylene low tunnels in field experiments at the Preston Avenue at Saskatoon in 2014 

and inoculated with Stemphylium botryosum field isolate SB19 at 1 x 103 conidia mL-1 at four 

different growth stages. 

 

Type 3 Tests of Fixed Effects 
Effect Num DF Den DF F Value Pr > F 

Inoculation timing (stage) 4 4.86 9.44 0.0161 
 

Contrasts 
Label Num DF Den DF F Value Pr > F 
covered vs non-covered 1 4.62 3.23 0.1373 

 

Least Square Estimates 
Effect Inoculation timing 

(stage)  
Estimate Standard 

Error 
DF t Value Pr > |t| 

stage Early-flower 2.25 1.0597 2.68 2.12 0.1346 
stage Mid-flower 5.5 1.2153 2.75 4.53 0.0242 
stage Control 1.25 0.7892 2.42 1.58 0.2324 
stage Podding 0 0.001953 1 0 1 
stage Seedling 4 1.2492 2.77 3.2 0.0551 

Figure A4.5.1. Percentage of seed infected by Stemphylium spp. in seeds harvested from lentil 
cultivar CDC Robin grown in green polyethylene low tunnels in field experiments at Saskatoon at 
the Seed Farm in 2013 and 2014, and at Preston Avenue in 2014 and inoculated with Stemphylium 
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botryosum field isolate SB19 at 1 x 103 conidia mL-1 at four different growth stages. Different 
letters within the same color column are significantly different. Separation by LSD (P < 0.05).  
 

 
 
 
 
 
A4.6. Analysis of percentage of seed staining of seeds harvested from low tunnels in field 

experiments at the Seed Farm in 2013 and 2014, and Preston Avenue in 2014. 

 

A4.6.1.Analysis of variance and linear contrast analysis of percentage of staining seed in seed 

harvested from lentil cultivar CDC Robin grown in green polyethylene low tunnels in field 

experiments at the Seed Farm at Saskatoon in 2013 and inoculated with Stemphylium botryosum 

field isolate SB19 at 1 x 103 conidia mL-1 at four different growth stages. 

Type 3 Tests of Fixed Effects 
Effect Num DF Den DF F Value Pr > F 

Inoculation timing (stage) 4 3.76 1.01 0.4995 
 

Contrasts 
Label Num DF Den DF F Value Pr > F 
covered vs non-covered 1 6.91 3.29 0.1132 
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A6.2. Analysis of variance and linear contrast analysis of percentage of staining seed in seed 

harvested from lentil cultivar CDC Robin grown in green polyethylene low tunnels in field 

experiments at the Seed Farm at Saskatoon in 2014 and inoculated with Stemphylium botryosum 

field isolate SB19 at 1 x 103 conidia mL-1 at four different growth stages. 

 

Type 3 Tests of Fixed Effects 
Effect Num DF Den DF F Value Pr > F 

Inoculation timing (stage) 4 12 1.13 0.3885 
 

Contrasts 
Label Num DF Den DF F Value Pr > F 
covered vs non-covered 1 12 2.47 0.1418 

 

 

 

A6.3. Analysis of variance, linear contrast analysis and least square estimates of the percentage of 

staining seed in seed harvested from lentil cultivar CDC Robin grown in green polyethylene low 

tunnels in field experiments at the Preston Avenue at Saskatoon in 2014 and inoculated with 

Stemphylium botryosum field isolate SB19 at 1 x 103 conidia mL-1 at four different growth stages. 

Type 3 Tests of Fixed Effects 
Effect Num DF Den DF F Value Pr > F 

Inoculation timing (stage) 4 15 4.14 0.0186 
 

Contrasts 
Label Num DF Den DF F Value Pr > F 
covered vs non-covered 1 15 7.77 0.0138 

 

 

Least Square Estimates 
Effect Inoculation timing 

(stage)  
Estimate Standard 

Error 
DF t Value Pr > |t| 

stage Early-flower 13.5 1.9257 15 7.01 <.0001 
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stage Mid-flower 16.5 1.9257 15 8.57 <.0001 
stage Control 6.5 1.9257 15 3.38 0.0042 
stage Podding 8.75 1.9257 15 4.54 0.0004 
stage Seedling 11.25 1.9257 15 5.84 <.0001 

 

Figure A6.1. Percentage of staining seed in seed harvested from lentil cultivar CDC Robin grown 
in green polyethylene low tunnels in field experiments at Saskatoon at the Seed Farm in 2013 and 
2014, and at Preston Avenue in 2014 and inoculated with Stemphylium botryosum field isolate 
SB19 at 1 x 103 conidia mL-1 at four different growth stages. Different letters within the same color 
column are significantly different. Separation of means by LSD (P < 0.05).  
 

 
 

 

A4.7. Analysis of seed diameter in seeds harvested from low tunnels in field experiments at 

the Seed Farm in 2013, Seed Farm in 2014, and Preston Avenue in 2014. 

 

A4.7.1. Analysis of variance and linear contrast analysis of seed diameter in seed harvested from 

lentil cultivar CDC Robin grown in green polyethylene low tunnels in field experiments at the Seed 
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Farm at Saskatoon in 2013 and inoculated with Stemphylium botryosum field isolate SB19 at 1 x 

103 conidia mL-1 at four different growth stages. 

 

Type 3 Tests of Fixed Effects 
Effect Num DF Den DF F Value Pr > F 

Inoculation timing (stage) 4 27 0.89 0.4858 
 

Contrasts 
Label Num DF Den DF F Value Pr > F 
covered vs non-covered 1 27 0.12 0.7371 

 

 

A4.7.2. Analysis of variance and linear contrast analysis of seed diameter in seed harvested from 

lentil cultivar CDC Robin grown in green polyethylene low tunnels in field experiments at the Seed 

Farm at Saskatoon in 2014 and inoculated with Stemphylium botryosum field isolate SB19 at 1 x 

103 conidia mL-1 at four different growth stages. 

 

Type 3 Tests of Fixed Effects 
Effect Num DF Den DF F Value Pr > F 

Inoculation timing (stage) 4 12 1.27 0.3337 
 

Contrasts 
Label Num DF Den DF F Value Pr > F 
covered vs non-covered 1 12 3.41 0.0894 

 

 

 

A4.7.3. Analysis of variance and linear contrast analysis of seed diameter in seed harvested from 

lentil cultivar CDC Robin grown in green polyethylene low tunnels in field experiments at the 

Preston Avenue at Saskatoon in 2014 and inoculated with Stemphylium botryosum field isolate 

SB19 at 1 x 103 conidia mL-1 at four different growth stages. 

 

Type 3 Tests of Fixed Effects 
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Effect Num DF Den DF F Value Pr > F 
Inoculation timing (stage) 4 12 0.55 0.7012 
 

Contrasts 
Label Num DF Den DF F Value Pr > F 
covered vs non-covered 1 12 1.01 0.3340 

 

Figure A4.7.1.  Assessment of seed diameter in seed harvested from lentil cultivar CDC Robin 
grown in green polyethylene low tunnels in field experiments at Saskatoon at the Seed Farm in 
2013 and 2014, and at Preston Avenue in 2014 and inoculated with Stemphylium botryosum field 
isolate SB19 at 1 x 103 conidia mL-1 at four different growth stages.   
 

 
 

 

A4.8. Analysis of of seed thickness in seeds harvested from low tunnels in field experiments 

at the Seed Farm in 2013, Seed Farm in 2014, and Preston Avenue in 2014. 

 

A4.8.1. Analysis of variance and linear contrast analysis of seed thickness in seed harvested from 

lentil cultivar CDC Robin grown in green polyethylene low tunnels in field experiments at the Seed 
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Farm at Saskatoon in 2013 and inoculated with Stemphylium botryosum field isolate SB19 at 1 x 

103 conidia mL-1 at four different growth stages. 

 

Type 3 Tests of Fixed Effects 
Effect Num DF Den DF F Value Pr > F 

Inoculation timing (stage) 4 2.82 0.98 0.5334 
 

Contrasts 
Label Num DF Den DF F Value Pr > F 
covered vs non-covered 1 2.82 2.07 0.2508 

 

 

A4.8.2. Analysis of variance and linear contrast analysis of seed thickness in seed harvested from 

lentil cultivar CDC Robin grown in green polyethylene low tunnels in field experiments at the Seed 

Farm at Saskatoon in 2014 and inoculated with Stemphylium botryosum field isolate SB19 at 1 x 

103 conidia mL-1 at four different growth stages. 

 

Type 3 Tests of Fixed Effects 
Effect Num DF Den DF F Value Pr > F 

Inoculation timing (stage) 4 12 1.21 0.3576 
 

Contrasts 
Label Num DF Den DF F Value Pr > F 
covered vs non-covered 1 12 3.09 0.1040 

 

 

 

A4.8.3. Analysis of variance and linear contrast analysis of seed thickness in seed harvested from 

lentil cultivar CDC Robin grown in green polyethylene low tunnels in field experiments at the 

Preston Avenue at Saskatoon in 2014 and inoculated with Stemphylium botryosum field isolate 

SB19 at 1 x 103 conidia mL-1 at four different growth stages. 

 

Type 3 Tests of Fixed Effects 
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Effect Num DF Den DF F Value Pr > F 
Inoculation timing (stage) 4 12 0.55 0.7010 
 

Contrasts 
Label Num DF Den DF F Value Pr > F 
covered vs non-covered 1 12 0.26 0.6218 

 

 

Figure 4.8.1. Assessment of seed thickness in seed harvested from lentil cultivar CDC Robin 
grown in green polyethylene low tunnels in field experiments at Saskatoon at the Seed Farm in 
2013 and 2014, and at Preston Avenue in 2014 and inoculated with Stemphylium botryosum field 
isolate SB19 at 1 x 103 conidia mL-1 at four different growth stages.  
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Appendix 5: Phylogenetic trees of the 23 isolates of Stemphylium spp., and an Alternaria sp. 
sequenced in this study, and sequences of ex-type/type of five Stemphylium species and one isolate 
of Alternaria alternata retrieved from GenBank based on ITS and gpd gene regions and constructed 
by using the Neighbor-Joining method. Bootstrap values ≥ 50% are shown above or below 
branches. The evolutionary analyses were conducted in MEGA6. a) ITS phylogenetic tree, b) gpd 
phylogenetic tree. 
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Appendix 5: Continued.               b) gpd 
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Appendix 6: Phylogenetic trees of the 23 isolates of Stemphylium spp., and an Alternaria sp. 
sequenced in this study, and sequences of ex-type/type of five Stemphylium species and one isolate 
of Alternaria alternata retrieved from GenBank based on ITS and gpd gene regions and constructed 
by using the Unweighted Pair Group Method with Arithmetic Mean method. Bootstrap values ≥ 
50% are shown above or below branches. The evolutionary analyses were conducted in MEGA6. 
a) ITS phylogenetic tree, b) gpd phylogenetic tree. 
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Appendix 6: continued.                                       b) gpd 
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Appendix 7: Phylogenetic trees of the 23 isolates of Stemphylium spp., and an Alternaria sp. 
sequenced in this study, and sequences of ex-type/type of five Stemphylium species and one isolate 
of Alternaria alternata retrieved from GenBank based on ITS and gpd gene regions and constructed 
by using the Maximum Likelihood method. Bootstrap values ≥ 50% are shown above or below 
branches. The evolutionary analyses were conducted in MEGA6. a) ITS phylogenetic tree, b) gpd 
phylogenetic tree. 
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Appendix 7: continued.                              b) gpd 
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Appendix 8: Phylogenetic trees of the 23 isolates of Stemphylium spp., and an Alternaria sp. 
sequenced in this study, and sequences of ex-type/type of five Stemphylium species and one isolate 
of Alternaria alternata retrieved from GenBank based on the sequences of the ITS and gpd 
concatenated gene regions and constructed by using the Neighbor-Joining method. Bootstrap 
values ≥ 50% are shown above or below branches. The evolutionary analyses were conducted in 
MEGA6.  
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Appendix 9: Phylogenetic trees of the 23 isolates of Stemphylium spp., and an Alternaria sp. 
sequenced in this study, and sequences of ex-type/type of five Stemphylium species and one isolate 
of Alternaria alternata retrieved from GenBank based on the sequences of the ITS and gpd 
concatenated gene regions and constructed by using the Unweighted Pair Group Method 
with Arithmetic Mean method. Bootstrap values ≥ 50% are shown above or below branches. The 
evolutionary analyses were conducted in MEGA6.  
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Appendix 10: Phylogenetic trees of the 23 isolates of Stemphylium spp., and an Alternaria sp. 
sequenced in this study, and sequences of ex-type/type of five Stemphylium species and one isolate 
of Alternaria alternata retrieved from GenBank based on the sequences of the ITS and gpd 
concatenated gene regions and constructed by using the Maximum Likelihood method. Bootstrap 
values ≥ 50% are shown above or below branches. The evolutionary analyses were conducted in 
MEGA6. 
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Appendix 11: Percent identity matrix of the concatenated DNA sequences of the ITS and gpd of 
the 23 isolates of Stemphylium spp., and Alternaria sp. sequenced in this study and sequences of 
five strains of Stemphylium ex-type/type species and one strain of Alternaria alternata retrieved 
from GenBank created with multiple sequence alignment by Clustal2.1 Omega (EMBL-EBI, 
www.ebi.ac.uk). 

 

                         
   y    q       p  q  g  y  g  (  

Isolates 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 SB126 100 100 100 58.3 58 59.2 59.2 59.2 59.2 59.2 59.2 58.9 58.9 58.9 58.92
2 SB137 100 100 100 58.3 58 59.2 59.2 59.2 59.2 59.2 59.2 58.9 58.9 58.9 58.92
3 SB138         100 100 100 58.3 58 59.2 59.2 59.2 59.2 59.2 59.2 58.9 58.9 58.9 58.92
4 Alternaria sp. 58.3 58.3 58.3 100 100 86.1 86.1 86.1 86.1 86.1 86 86.2 86.2 86.2 86.22
5 A. alternata EGS 34-016 58 58 58 100 100 86.3 86.3 86.3 86.3 86.3 86.1 86.4 86.4 86.4 86.36
6 SB27           59.2 59.2 59.2 86.1 86.3 100 100 100 100 100 99.7 97.1 97.1 97.1 97.05
7 SB40           59.2 59.2 59.2 86.1 86.3 100 100 100 100 100 99.7 97.1 97.1 97.1 97.05
8 SB44           59.2 59.2 59.2 86.1 86.3 100 100 100 100 100 99.7 97.1 97.1 97.1 97.05
9 SB131          59.2 59.2 59.2 86.1 86.3 100 100 100 100 100 99.7 97.1 97.1 97.1 97.05

10 SB141          59.2 59.2 59.2 86.1 86.3 100 100 100 100 100 99.7 97.1 97.1 97.1 97.05
11 SB19           59.2 59.2 59.2 86 86.1 99.7 99.7 99.7 99.7 99.7 100 96.8 96.8 96.8 96.76
12 SB17           58.9 58.9 58.9 86.2 86.4 97.1 97.1 97.1 97.1 97.1 96.8 100 100 100 100
13 SB20           58.9 58.9 58.9 86.2 86.4 97.1 97.1 97.1 97.1 97.1 96.8 100 100 100 100
14 SB31           58.9 58.9 58.9 86.2 86.4 97.1 97.1 97.1 97.1 97.1 96.8 100 100 100 100
15 SB134          58.9 58.9 58.9 86.2 86.4 97.1 97.1 97.1 97.1 97.1 96.8 100 100 100 100
16 SB11           58.9 58.9 58.9 85.9 86 97 97 97 97 97 97.3 99.5 99.5 99.5 99.53
17 SB85           58.9 58.9 58.9 86 86.2 97.2 97.2 97.2 97.2 97.2 97 99.8 99.8 99.8 99.81
18 SB135          58.9 58.9 58.9 86 86.2 97.2 97.2 97.2 97.2 97.2 97 99.8 99.8 99.8 99.81
19 DAOM195299          58.9 58.9 58.9 86 86.2 97.2 97.2 97.2 97.2 97.2 97 99.8 99.8 99.8 99.81
20 P. tarda  EGS 08-069 59.1 59.1 59.1 86 86 94.3 94.3 94.3 94.3 94.3 94.1 95.3 95.3 95.3 95.34
21 Sgracilariae   59 59 59 86.8 87 95.4 95.4 95.4 95.4 95.4 95.2 96.6 96.6 96.6 96.6
22 P. herbarum  EGS 36-138 58.7 58.7 58.7 86.7 86.8 95 95 95 95 95 94.9 96.1 96.1 96.1 96.13
23 SB32           58.7 58.7 58.7 86.8 86.9 95.1 95.1 95.1 95.1 95.1 94.9 96.2 96.2 96.2 96.23
24 SB49          58.7 58.7 58.7 86.8 86.9 95.1 95.1 95.1 95.1 95.1 94.9 96.2 96.2 96.2 96.23
25 SB133          58.7 58.7 58.7 86.8 86.9 95.1 95.1 95.1 95.1 95.1 94.9 96.2 96.2 96.2 96.23
26 SB136          58.8 58.8 58.8 86.8 86.9 95.1 95.1 95.1 95.1 95.1 94.9 96.2 96.2 96.2 96.22
27 SB139          58.7 58.7 58.7 86.8 86.9 95.1 95.1 95.1 95.1 95.1 94.9 96.2 96.2 96.2 96.23
28 SB140          58.7 58.7 58.7 86.8 86.9 95.1 95.1 95.1 95.1 95.1 94.9 96.2 96.2 96.2 96.23
29 S. vesicarium  EGS 37-067 58.7 58.7 58.7 86.8 86.9 95.1 95.1 95.1 95.1 95.1 94.9 96.2 96.2 96.2 96.23
30 S. alfalfa EGS 36-088 58.7 58.7 58.7 86.8 86.9 95.1 95.1 95.1 95.1 95.1 94.9 96.2 96.2 96.2 96.23
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Appendix 11: continued.

 

 

 

  
Isolates 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 SB126 58.9 58.9 58.9 58.9 59.1 59 58.7 58.7 58.7 58.7 58.8 58.7 58.7 58.7 58.74
2 SB137 58.9 58.9 58.9 58.9 59.1 59 58.7 58.7 58.7 58.7 58.8 58.7 58.7 58.7 58.74
3 SB138         58.9 58.9 58.9 58.9 59.1 59 58.7 58.7 58.7 58.7 58.8 58.7 58.7 58.7 58.74
4 Alternaria sp. 85.9 86 86 86 86 86.8 86.7 86.8 86.8 86.8 86.8 86.8 86.8 86.8 86.79
5 A. alternata 86 86.2 86.2 86.2 86 87 86.8 86.9 86.9 86.9 86.9 86.9 86.9 86.9 86.91
6 SB27           97 97.2 97.2 97.2 94.3 95.4 95 95.1 95.1 95.1 95.1 95.1 95.1 95.1 95.13
7 SB40           97 97.2 97.2 97.2 94.3 95.4 95 95.1 95.1 95.1 95.1 95.1 95.1 95.1 95.13
8 SB44           97 97.2 97.2 97.2 94.3 95.4 95 95.1 95.1 95.1 95.1 95.1 95.1 95.1 95.13
9 SB131          97 97.2 97.2 97.2 94.3 95.4 95 95.1 95.1 95.1 95.1 95.1 95.1 95.1 95.13

10 SB141          97 97.2 97.2 97.2 94.3 95.4 95 95.1 95.1 95.1 95.1 95.1 95.1 95.1 95.13
11 SB19           97.3 97 97 97 94.1 95.2 94.9 94.9 94.9 94.9 94.9 94.9 94.9 94.9 94.94
12 SB17           99.5 99.8 99.8 99.8 95.3 96.6 96.1 96.2 96.2 96.2 96.2 96.2 96.2 96.2 96.23
13 SB20           99.5 99.8 99.8 99.8 95.3 96.6 96.1 96.2 96.2 96.2 96.2 96.2 96.2 96.2 96.23
14 SB31           99.5 99.8 99.8 99.8 95.3 96.6 96.1 96.2 96.2 96.2 96.2 96.2 96.2 96.2 96.23
15 SB134          99.5 99.8 99.8 99.8 95.3 96.6 96.1 96.2 96.2 96.2 96.2 96.2 96.2 96.2 96.23
16 SB11           100 99.7 99.7 99.7 95.3 96.6 96.1 96.2 96.2 96.2 96.2 96.2 96.2 96.2 96.23
17 SB85           99.7 100 100 100 95.5 96.8 96.3 96.4 96.4 96.4 96.4 96.4 96.4 96.4 96.42
18 SB135          99.7 100 100 100 95.5 96.8 96.3 96.4 96.4 96.4 96.4 96.4 96.4 96.4 96.42
19 DAOM195299          99.7 100 100 100 95.5 96.8 96.3 96.4 96.4 96.4 96.4 96.4 96.4 96.4 96.42
20 P. tarda  EGS 08-069 95.3 95.5 95.5 95.5 100 97.8 98.1 98.1 98.1 98.1 98.1 98.1 98.1 98.1 98.07
21 Sgracilariae   96.6 96.8 96.8 96.8 97.8 100 99.2 99.3 99.3 99.3 99.3 99.3 99.3 99.3 99.34
22 P. herbarum  EGS 36-138 96.1 96.3 96.3 96.3 98.1 99.2 100 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.91
23 SB32           96.2 96.4 96.4 96.4 98.1 99.3 99.9 100 100 100 100 100 100 100 100
24 SB49          96.2 96.4 96.4 96.4 98.1 99.3 99.9 100 100 100 100 100 100 100 100
25 SB133          96.2 96.4 96.4 96.4 98.1 99.3 99.9 100 100 100 100 100 100 100 100
26 SB136          96.2 96.4 96.4 96.4 98.1 99.3 99.9 100 100 100 100 100 100 100 100
27 SB139          96.2 96.4 96.4 96.4 98.1 99.3 99.9 100 100 100 100 100 100 100 100
28 SB140          96.2 96.4 96.4 96.4 98.1 99.3 99.9 100 100 100 100 100 100 100 100
29 S. vesicarium  EGS 37-067 96.2 96.4 96.4 96.4 98.1 99.3 99.9 100 100 100 100 100 100 100 100
30 S. alfalfa EGS 36-088 96.2 96.4 96.4 96.4 98.1 99.3 99.9 100 100 100 100 100 100 100 100
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