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Abstract

Unmanned Aerial Vehicles (UAVs) have always been faced with power management challenges. Managing

power consumption becomes critical, especially in surveillance applications where the longer ight time

results in wider coverage and a cheaper solution. While most current studies focus on utilizing new models

for improving event detection without considering the power constraints, our design’s �rst priority is our

platform’s power e�ciency. Implementing an algorithm on a portable device with minimal access to power

supply sources requires special hardware and software considerations. An improved algorithm may need

more powerful hardware, which can surge power consumption. Therefore, we aim to propose a method to

be suitable for such devices with power consumption constraints. In this work, we propose an event-driven

surveillance method with an e�cient video transmission algorithm that reduces power consumption while

preserving image quality. The surveillance will start automatically once the low-power AI-based onboard

processor detects the desired event. The drone repeatedly solves a classi�cation problem by employing a

lightweight deep learning algorithm. When the UAV detects the de�ned event, a sample image is sent to

the server for validation. Afterwards, if the server validates the drone decision, the drone, which can be a

UAV, starts sending a colored image accompanied by a group of N grayscale images. Then, in the server,

the grayscale images will be colorized using a convolution neural network trained by the colored images. By

adopting this method, the sent data rate decreases and the server’s computation load increases. The former

part results in a drop in the UAV’s power consumption, which is our aim. In this work, an application of

wild�re detection and surveillance has been implemented to show the proof of concept of the TinySurveillance

method. Using four videos of similar scenarios with di�erent spatial and temporal information that a UAV

may face, with various spatial and temporal characteristics, we show the e�ectiveness of our method. Our

results show that the power consumption of the onboard processing unit in detection mode will be reduced

by at least 4 times, reaching a detection accuracy of 85%, while in surveillance mode, we can decrease the

data transmission rate by almost 66% while achieving a competent image quality with PSNRAvg of 41.35

dB, PSNR of 30.94 dB, and output frame rate of 5.2. Also, the reproduced images show the outstanding

performance of the algorithm by generating colorized images identical to the original scenes. There are main

features that a�ect our method’s power consumption and output quality, like the number of grayscale images,

sent video bitrate, learning rate, and video characteristics that are discussed comprehensively.
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1 Introduction

Every year millions of hectares of lands are burned by wild�res all over the world. National Interagency

Fire Center of the United States has reported that in 2020 and 2021, 7.1 and 10.1 million acres of land were

burned by wild�res [10], respectively, while Canadian National Fire Database outlines an area of almost 3

million hectares destructed by wild�res in 2019 [11]. Forests a�ect our environment in numerous ways. They

are responsible for producing oxygen and absorbing carbon dioxide while mitigating oods and controlling

soil erosion. In addition, they provide healthy food to millions. This shows the signi�cance of preserving

these human assets. A current research has analyzed the costs of preserving forests and planting new trees in

the USA. This study estimates that reducing the amount of carbon dioxide release by 0.6 gigatons each year

until 2055 costs 2 billion dollars per year [12]. This shows the high expenses regarding forest management and

preservation. As a result, it can be understood to what extent wild�res can be harmful to both environment

and economics.

The early detection of the �re is the most critical factor when it comes to �re suppression. Then, by

noticing the related departments in the shortest time, the �re is bound to be extinguished, while with late

detection, �re can spread to a wide area and becomes uncontrollable. The more the �re spreads, the more

human lives will be put in danger, the ecosystem will be damaged, and people's assets will be burned.

Therefore, �nding the quickest, cheapest, and most practical ways is of the highest importance to minimize

the adverse e�ects.

The three main approaches for �re detection are satellites, airplanes, and unmanned aerial vehicles

(UAVs). The satellites are able to cover a wide range of forests, looking for wild�re. Their major draw-

back is that they cannot detect �res in the initial stages. Therefore, �res detected by satellites have already

spread widely and are more di�cult to control and suppress. Besides, clouds may block the wild�re images

depending on the weather condition. In contrast to satellites, small airplanes often designed for short trips

can detect wild�res even in starting minutes. But the problem is that ying continuously over forests in a

wider area which requires tens of pilots and airplanes, is considerably expensive. As a result, the third group

is introduced, which can satisfy both cheap conditions and detect �res in the early hours.

In previous years, UAVs have been utilized for di�erent applications such as search and rescue [13], wild�re

detection [14], urban monitoring [15], and agriculture [16]. Especially in applications of disaster management,

taking advantage of drones equipped with cameras, which provide real-time information about the disaster

scene, can help mitigate the harmful e�ects [17].

The major problem of UAVs is being resource-constrained, which limits the drone's ight duration. There
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is a trade-o� between the battery capacity and its weight. A higher battery capacity increases the ight time,

while the additional weight of the battery will raise the power consumption and decrease ight time. As a

result, the drone needs to return from the operation to recharge after a limited period, while some applications

such as wild�re surveillance and search and rescue need a wide area coverage which cannot be achieved with

this limitation. A solution is to build more charging stations for UAVs, while in another way, more drones

can be used, which both scenarios increase the project cost and slow down the operation. Hence proposing

power-e�cient surveillance methods can considerably improve the performance of these applications. Having

the overall power consumption (PC) of the UAV decreased, the ight time and consequently the covered area

would increase with the same number of drones. Moreover, in the case of surveillance of critical infrastructure

and military sites in which the recorded videos include sensitive information and the risk of data transmission

is higher, new methods are needed to protect the data privacy while they can trigger the undesired events.

We aim to answer this problem in our work as well.

To process the UAV recorded images, most applications transmit data to a server to do the processing

by having access to powerful resources [18{21]. These applications are less resource-constrained to apply

di�erent algorithms to their received data, while this would force them to send out the data from the UAV

to the server continuously. Besides, in scenarios where data privacy is a top priority, security layers using

cryptography algorithms need to be implemented on the UAVs, which adds to the PC of the device while

slowing down the data transmission [22]. In a current study, Fotovvat et al. show that even implementing

lightweight cryptography algorithms on hardware like Raspberry Pi 3 can take from 0.175 to 3.338 seconds for

data with a size between 0 to 32 Bytes. This illustrates the adverse e�ect of using cryptography algorithms

on our transmission time; however, they help protect data. This is also another area in which our method

becomes useful.

1.1 Research Objectives and Questions

Considering previous notes on necessities for an improved detection and surveillance application with UAVs,

a system that answers the following questions with respective answers is needed.

ˆ Is the transmission of the whole data necessary? No, the below feature is considered to address

this problem.

An onboard detection module to avoid unnecessary data transmission : This module should

provide acceptable results regarding the detection of the desired event; however, the performance is not

anticipated to compete with the cutting-edge algorithms considering its lightweight feature

ˆ Should we transmit all the image information? Can the transmission process improve in

terms of power consumption? New algorithms can be employed in our transmission method to

reduce the power consumption on the drone's end, as described below in the next two paragraphs.
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An e�cient low-power data transmission algorithm with a low computational load on the

UAV side : There is always a trade-o� among di�erent parameters on a problem solution. To reduce

the power consumption, we take advantage of this point and look for a solution that reduces the power

consumption in a way that there is more load on the server side instead of the edge node.

A colorization algorithm : To reconstruct the color channels of transmitted images, an algorithm

needs to be developed. No limitation for the resources that this algorithm occupies is considered.

ˆ Have other studies tried to take advantage of extra low-power hardware in similar appli-

cations? Other studies have utilized hardware with low consumption like RPi boards; however, we

have gone one step further and used hardware with less power consumption. Below a full explanation

can be found.

ˆ A core processing unit with a low power consumption suitable for running machine learn-

ing algorithms : Besides the e�cient methods and algorithms that can improve the power consumption

performance of the edge node, the hardware used as the processing unit plays a vital role in total power

consumption performance. However, this choice should have the minimum requirements for running the

algorithms. Also, the algorithm should be designed respectively to be compatible with the hardware

constraints and limitations.

Among the previously done studies in this area, the most notable neglection is the lack of attention to

the hardware and PC besides the software improvement. As a result, to address this problem considering

our de�ned features, the �rst step is to choose the right hardware that matches our criteria to achieve the

mentioned features we have set. Afterwards, the proper algorithm should be developed, implemented on the

hardware, and tested to measure performance. Next, the server must implement the colorization algorithm

to reproduce the reconstruct images. Implementing this project with the mentioned features, the main

contributions of our work are as follows:

ˆ Complete application of surveillance : we will present an application of surveillance from the

detection to surveillance whose task is to detect a prede�ned event and start a surveillance session in

case of event detection. The event-triggered data transmission minimizes the risk of data breach and

unauthorized data access. Also, by limiting the data transmission, the PC of the drone would decrease.

ˆ Cutting-edge low-power board utilization : To be able to detect the event by running a deep

learning algorithm and consuming minimal energy at the same time, an advanced, highly energy-

e�cient processing unit is utilized, which rarely have been used in previous studies.

ˆ E�cient video transmission method : A new video transmission method is proposed to reduce the

amount of data sent by the UAV while preserving the video quality. This method is designed to be low-

power by taking advantage of deep learning algorithms in image colorization tasks on our server-side

program.

3



ˆ Wild�re Detection : Among di�erent applications, we will analyze an application of wild�re detection

and surveillance because of its importance and the current major problems in this area. We will prove

the functionality of our method in detecting wild�res and surveilling wild�re scenes.

ˆ A comprehensive report of measurements and results : We �ll the gap in reporting all the

necessary metrics in an application of wild�re detection, which includes measurements related to power

consumption on the edge, �re detection performance, and transmitted image quality altogether.

1.2 Thesis Structure

The structure of the thesis is as follows:

ˆ Chapter 1: Introduction : This chapter introduces our research's general overview and highlights

the importance of our research and its contribution to the �eld.

ˆ Chapter 2: Related Work : This chapter provides an intuitive literature review of several studies

in sections on forest �re detection, power consumption analysis, and image colorization. This chapter

shows the shortcomings that exist in previous works, in di�erent areas, and what is our design criteria,

based on them.

ˆ Chapter 3: TinySurveillance : This chapter describes the two main phases of detection and surveil-

lance by giving step-by-step explanations. The detection algorithm is clearly explained, and our power-

e�cient transmission method is explained, which leads to introducing our deep learning approach using

the image colorization method. Finally, the e�ect of various parameters on our surveillance quality will

be analyzed.

ˆ Chapter 4: Experimental Setup and Evaluation : This chapter introduces the hardware used to

implement our study in addition to explaining the used dataset for deep learning algorithms. A brief

explanation on deep learning algorithm implementation on the hardware will be presented. Finally, the

evaluation metrics will be mentioned.

ˆ Chapter 5: Results and Discussions : This chapter presents the results of our work regarding the

detection of the UAV and the quality of the transmitted images using our algorithm. We prove the

functionality of our method in successfully detecting and surveilling the scene. Afterward, the result

regarding di�erent settings in our algorithm will be shown. Finally, a detailed comparison with similar

works will be provided to give a clear insight into the performance of our work comparing others both

quantitatively and qualitatively.

ˆ Chapter 6: Conclusion : This chapter presents the conclusions drawn, which show the key contribu-

tions of our proposed method with the most signi�cant advantages of our work over previous studies.

Then, we suggest future possible research and improvements that can be proposed based on our work.
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2 Related Works

To show how our work intends to contribute to current studies, it is necessary to review the literature on

three main subjects forest �re detection, power consumption analysis, and image colorization algorithms. The

�rst part introduces the application that we try our method on by describing other used methods. Then, in

the second section, the power consumption analysis results of similar studies will be reviewed. Finally, works

related to our image colorization method, which takes part in our surveillance algorithm, will be reviewed.

It is worth mentioning that the idea of this work was �rstly inspired by research conducted by Hasan et

al. [23]. Then, di�erent blocks of their method are implemented using new tools and additional steps added

with a practical application. Hassan et al. [23] introduced a power-e�cient method for video surveillance. This

method transmits grayscale images with some colored images in certain intervals, similar to our proposed

method. However, to reproduce the colored images, they utilize a motion estimation algorithm. Simply

put, this algorithm compares the colored imageY channel with the grayscale image, and it detects the

amount of movement and its direction in de�ned blocks. Afterward, it tries to colorize the grayscale images

by substituting color channels (Cb and Cr ) of the original image in the grayscale image with movement

consideration. In other words, this algorithm shifts the color channels of the reference image based on the

grayscale channels comparison. The problem with this methodology is that it relies on the similarity between

consecutive images, and after several images, the colored and grayscale images are not su�ciently similar.

As a result, results are visually unsatisfying.

2.1 Forest Fire Detection

There are di�erent events that have attracted the interest of researchers in the area of UAV event detection,

mainly consisting of forest �re detection (FFD), search and rescue, and object detection. In this section,

we will focus on the applications of FFD since we assess our method based on an FFD application. There

are two main approaches to detecting forest �res. On one hand, researchers design algorithms to detect

ame and smoke features such as color, texture, and movement. Cruzet al. [24] proposed a new color index

called FFDI with an e�cient processing time for ame and smoke detection. Yuan et al. [25] designed a

computer-vision algorithm comprised of histogram-based segmentation and an optical ow that uses �re's

brightness and motion features. Sudhakaret al. [26] developed a multi-UAV system using �re color and

movement characteristics which approximate and re-evaluate the state of the �re based on the estimations of

UAVs. [27] introduced a forest �re detection algorithm using a combination of color and motion information
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of wild�re images.

Although computer-vision algorithms for FFD can achieve acceptable results, they are vulnerable to

various lighting scenarios in which the threshold parameters need to be calibrated according to the current

situation. Therefore, deep learning (DL) methodologies were introduced, which o�er a stable solution for

di�erent unseen scenarios. Kalatziset al. [28] compared the implementation of an application of abnormal

event detection on three di�erent scenarios of edge only, cloud-only, and fog only in terms of edge device

power consumption (PC), decision-making time, and amount of data transmission. In an object detection

application, authors developed deep learning algorithms for both on-board and o�-board processing of images

taken by a UAV [29]. They ran multiple tests on various embedded hardware. Kinanevaet al. [30] proposed

a real-time image processing method using the SSD MobileNetv1 coco deep learning model on a VTOL

�xed-wing UAV for FFD in its early stages. Nguyen et al. [31] improve the previous works by implementing

the SSD algorithm on the NVIDIA Jetson nano board using the MobileNets base model. However, it does

not take into consideration the high PC of such a board and its e�ects on UAV PC. Chen et al. [32] also

used a CNN to detect forest �res using a preprocessing stage including histogram equalization and low-pass

�ltering. The results show high performance; however, there is a lack of a wide range of forest �re images

which makes the results inconsistent. Next, there are several works that have used the You Only Look Once

(YOLO) algorithm for event detection. A hybrid approach was adopted by Alam et al. [33] for abnormal

event detection using the Tiny YOLO technique. The event is �rstly detected by on-board processing,

and then a more complicated analysis is done by cloud-based data processing. The paper claims the PC

is reduced while there is no evidence. Jiaoet al. [34] utilized the YOLOv3-Tiny algorithm on a UAV for

FFD implemented on DJI MANIFOLD [35]. Then, the edge device transmits the images of desired events

to the server for decision-making. The YOLO technique has also been used in the application of search

and rescue (SAR), where Mishraet al. [36] employed the YOLOv2 method with the SSD MobilNets model

on Raspberry Pi (RPi) 3B to detect humans seeking help in natural disasters. Similarly, [37] introduced

a lightweight CNN architecture to classify events of collapsed buildings, �re and smoke, tra�c accidents,

and oods. It implemented the algorithm on a platform equipped with a quad-core ARM Cortex-A57. The

authors propose that the algorithm is suitable for a low-power whereas it does not provide quantitative

information regarding the PC of the algorithm. Hossain et al. add to the current research by using the Deep

SORT algorithm for gesture recognition after the human detection by the YOLOv3-Tiny model on a UAV.

Focusing more on the wild�re application, the authors in [38] address this problem with a novel method that

extracts texture and color features and gives them to a multi-layer perceptron model. The dataset images

are collected by a UAV; however, the implementation is on a ground station. Barmpoutiset al. [39] took

advantage of a 360-degree camera sensor to exceed the limits of sight of view. They used two deep CNNs

to detect both ame and smoke with an initial segmentation of the �re region to improve the results. Yet,

a small number of images used for training may result in unstable performance. Also, the feasibility of the

implementation one the embedded devices is unknown. Then, Wuet al. [40] proposed a graph neural network
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for FFD in multi-view images, which is followed by a �re segmentation algorithm to extract dynamic key

features.

2.2 Power Consumption Analysis

In applications that involve mobile hardware like UAV, an important feature to be considered is the PC.

As the power supply sources are limited in these devices, PC management becomes critical. In this section,

di�erent studies that have analyzed PC in similar applications will be reviewed. It is worth noting that a

large number of similar applications, in FFD and UAVs, have not analyzed the PC. As a result, we have

tried to �nd the most related works which involve di�erent parts of our application.

Mori et al. [41] suggest an energy-e�cient method of data transmission for the Internet of Video Things

(IoVT) which utilizes a Raspberry Pi Zero, an Atmel RF, and a camera to send recorded videos from the

edge node (the drone in our application). This system consumes around 1400 mW. Baccoet al. [42] analyzed

the performance of Web Real-Time Communications (WebRTC) over devices with constrained resources,

such as RPi 3B. This study shows that the average power consumption of RPi based on the settings and the

transmission parameters like source rate, PSNR, SSIM, average fps, and CPU frequency can vary between

3.4 W to 2.4 W. Authors show that the default parameters alteration leads to power consumption reduction

in the application, which helps the UAVs to manage their PC. Harjula et al. [43] work on the transmission

of high-quality videos in Wireless Sensor Networks (WSNs). To this end, they have developed a prototype

called sleepyCAM, based on Raspberry Pi 3. This device is designed to be used statically and cannot be

used on a drone. The important point regarding its functionality is that it turns o� when there are no

motions in the surveillance scene, and when it detects motions beyond a threshold, it starts the surveillance.

During the transmission, they report power consumption of 2682 mW while in overall, the PC reduces by

99.6%. However, as mentioned, this method is not practical in scenarios where the camera should be moving.

In [44], writers propose a multiprocessor sensor network with the aim of environmental monitoring. They

use LoRa to send the images among nodes and provide a power consumption analysis, respectively. Based

on the information provided, the power consumption in the capture and compression stage is between 2 to

2.5 W, with a slight increase of around 200 mW in the data streaming step. Yet there are other studies in

image capturing and transmission which have implemented their algorithms on hardware but did not provide

PC measurements. The following works are the papers in which we have estimated the PC and compared it

to our work with respect to the hardware used. In [45], Rubinoet al. proposed an image compression and

transmission method which detects the more important parts of the image or known as Region of Interest

(ROI). Then, it tries to compress the ROI less than other less signi�cant areas. They utilized an RPi 2B in

addition to RF modules and an Arduino board for transmission. Similarly, the authors in [46] have utilized

an RPi 2B with a NightVision H camera to capture, compress, and transmit the images. Although the

compression impacts on the quality of the sent images are discussed, the PC of the system in overall and
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di�erent settings has not been considered. The last study that has been reviewed is called Video Slice.

Kawai [47] proposed a method for plant surveillance. This paper aims to reduce the transmitted data by

only sending the di�erence between consecutive frames as they are very similar. They reported that the

transmitted data with this method decreased by almost 75% while the image quality is preserved. RPi 3B

is used as the hardware for implementation by the author. It is worth mentioning that the functionality of

this work is based on minimal movements in the images and, therefore, cannot be used in dynamic situations

which need the camera to move.

2.3 Image Colorization

Image colorization is a method of colorizing grayscale images to make them as similar as their real representa-

tion. The image colorization is a necessary part of our method as the received images by the server is mostly

grayscale and must be converted to colored images. There are generally two areas of image colorization.

Colorization with guidelines and colorization without guidelines. In the latter one, only a grayscale image is

the algorithm's input; in the former one, the user may give some hints about colors in the image or insert

another to the algorithm as a reference. Then, the image is colored with respect to the reference image. We

will review works in both categories. It is worth mentioning that the colorization problem is considered a

problem with in�nite answers in some cases. In colorizing certain objects, like fruits, there are some expec-

tations for color; for example, bananas are expected to be yellow often. However, by painting images with

generic objects like clothes or shoes, the colorization task becomes more complicated as there are not any

true answers. In the �rst category, which has no guidelines, most of the previous works' pipeline is to train

a model based on a dataset and afterward, testing the model's performance on an unseen image while in the

guided method, in addition to the previous knowledge of algorithm of objects color, extra information will be

provided that will be fused with the prior information. Therefore the resulting colored images are often more

satisfying. Our method lies between these two methods, which will be explained in the next chapters. Staring

with the studies without guidelines, the [2] authors based their colorization algorithm on two observations:

considering semantic information and predicting color histograms instead of single colors. This is because, for

some items, multiple colors can be assigned. Then, they assigned a system to design a system based on these

principles and connect these two concepts. They tested their model on several datasets, including SUN-A

and SUN-6, to show its performance. Similarly, Lizukaet al. [5] proposed a colorization network that uses

an image's local and global features. Simply put, in addition to using convolutional layers to color the image

based on the training dataset, it �rst categorizes the image and based on the category does the colorization.

However, this method relies on the fact that the dataset must be versatile enough to have a similar group to

the input image. Considering the input images placed in a known category, the colorization results in this

work show a signi�cant improvement. Zhang et al. [8] proposes a new method with a few di�erences from the

two previous works, including a di�erent loss function and CNN architecture. It reports that the algorithm
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fools 32% of humans in the trial with the colorized images, which is higher than previous methods. Ozbulak

In [6], proposed a new network called ColorCapsNet based on CaspNet to map grayscale pictures to the CIE

Lab colorspace. Two datasets of DIV2K and ILSVRC 2012 are used for training. The model is evaluated

using PSNR and SSIM metrics. This paper tries to achieve better results by modifying the CapsNet network

by utilizing the VGG-19 model in the feature detection part, adding batch normalization to the �rst convo-

lutional layers, and changing the number of capsules in the classi�cation layer. Same as previous works, two

metrics of PSNR and SSIM are used in this work. This work does not provide a comparison with previous

work.

Zhang also published another study with other researchers [9] to color grayscale images using a CNN

network with user guidance. This method receives the color of some pixels as the input and, based on that

and a previously learned network colors the images. This user-guided approach tries to overcome the problem

of multiple acceptable choices for a single colorization task by having some hints of the user's desire. However,

in the next study, researchers make use of an example image instead of some pixels. Isolaet al. took advantage

of the conditional GAN network to develop an image-to-image translation which means representing a scene

with another possible image. This paper provides a framework that is able to do the mentioned task for a

wide range of purposes. The use of a di�erent generator and discriminator distinguishes their work from the

other works. He et al. [1] proposes the �rst examplar-based local colorization approach. In this method, the

reference image does not need to be the same object. For example, a person's portrait can be colored using

a car image. This method is able to �nd the best reference among multiple references and take advantage

of the double-branch process. The �rst branch does a local colorization based on the reference, while the

second branch also colorizes the grayscale image meaningfully based on the prior information. Leeet al. [7]

introduced an algorithm to paint sketches based on a colored reference image. This work suggests a new

training scheme by generating augmented-self reference in a self-supervised manner. Wuet al. [3] proposed

a colorization algorithm based on a deep convolution adversarial network. Their model, named symmetrical

multi-scale DCGAN, is designed especially for colorizing remote sensing images. The generator part of their

GAN, in addition to being an auto-encoder, acts as a multi-scale convolutional operation that, based on

their illustrations, considerably improves the colored image details. To conclude, studies in both groups,

with or without guidelines, try to propose di�erent deep learning algorithms to present an output that �rstly

truly colors the objects with certain colors in addition to an appealing and sensible colorization for objects

without any de�ned colors. However, regarding the application of these studies, taking advantage of image

colorization in surveillance objectives is remained untouched. Therefore, the new approaches that can be

adopted in this type of application have not also been investigated.

Having reviewed the existing event-based techniques in UAV event detection applications, it can be

understood that several aspects of a practical application have not been considered. As a result, based on

our literature survey in three categories of forest �re detection, power consumption, and image colorization,

we came up with the following design requirements for our application:
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Figure 2.1: Examples of image colorization related studies' results; (A): [1],(B): [2], (C): [3], (D): [4],
(E): [5], (F): [6], (G): [7], (H): [8], (I): [9]

1. The hardware which is used in di�erent UAV-based surveillance applications has not been analyzed in

terms of power consumption. This is a major problem, as the UAV is a power-constrained device and

therefore the power consumption needs to be managed carefully. Otherwise, it may lead to a signi�cant

increase in the overall power consumption of the device. Although DL methods proposed in these

studies achieve signi�cant results, they cost more hardware resources. Therefore, we set our aim to

design a low-cost process to detect forest �res based on DL.

2. The previous implementations in other works seem to be incomplete as they only focused on the stage

of detection. Especially in the FFD, being aware of the direction in which the �re is spreading and

having visuals on the scene can help the decision-making process. Hence a power-e�cient transmission

algorithm based on a DL architecture is introduced to provide a live feed of the scene, optimized for less

PC. Note that in the literature, in most cases, the transmission is done without any special consideration

of PC.
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3. In contrast to discussed works, our proposed method focuses on reducing the PC of the UAV while

achieving an acceptable performance for the event detection accuracy with a power-aware transmission

algorithm to �ll the gap for a power-e�cient surveillance solution that addresses both detection and

surveillance parts.

4. Designing an image colorization algorithm that can be adapted to any possible scenarios without ex-

panding the training dataset. We aim to make this algorithm e�ective but simple to increase the output

rate of our algorithm.
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3 Proposed Method: TinySurveillance

This study proposes a power-e�cient method for a surveillance application. This method especially �ts

the applications in which a mobile device such as a UAV performs the surveillance task. To reduce PC, we

have introduced an event-based surveillance method. Therefore, the data will be transmitted to the server

in case a prede�ned incident happens. This incident can be di�erent based on the application that the

UAV is designed for, including street �ghts, wild�res, search and rescue, and so on. Each of the mentioned

applications is a classi�cation algorithm in the edge node's aspect of view. For example, in the case of search

and rescue, the edge node analyzes the picture in terms of the detection of a person seeking help. As a result,

depending on the di�culty of the classi�cation problem, the computation load of the edge node is various,

and a suitable device needs to be utilized. The implementation process includes four di�erent stages: (i) At

the �rst level, the tiny machine learning (tinyML) algorithm runs continuously as long as it �nds the desired

event; then, (ii) after detection, to ensure of the detected event, a sample image will be sent to the server

where a more complicated algorithm analyzes the image. Afterward, if the server con�rms the occurrence

of the event, a signal will be transmitted to the edge node, which enables the surveillance mode; next, (iii)

the surveillance starts in which the edge device transmits groups of images, each consists of N grayscale

images in addition to one colored image. Finally, (iv) a DL-based image colorization algorithm implemented

on the server colorizes the grayscale images guided by the colored image. In this paper, we have considered

wild�re detection as our case study. Also, to evaluate the performance of this method, multiple variables are

measured, including PC of the edge device in di�erent operational modes, Peak-signal-to-noise (PSNR) ratio,

Structural similarity index (SSIM) of received images, the accuracy of event detection, and output frame

rate.

3.1 Event Detection by TinyML Algorithm

TinyML is a technique aiming to apply machine learning and deep learning algorithms to embedded systems.

In this project, a deep learning algorithm will be used. IoT applications may involve hundreds of nodes in

which each node collects information. Sending this information to the servers for processing and decision-

making can be a challenging task considering the massive amount of generated data by the nodes as it both

takes time and consumes energy [48,49]. Moreover, in some cases protecting the privacy of transferred data is

a must, especially information related to infrastructures, military sites, and the like. To be able to send these

types of information, cryptography methods must be used that increase the computations on the edge node
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Figure 3.1: Four stages of our solution

and therefore raise the PC. Therefore, by processing data at the edge node, the rate of data transmission

reduces, which makes TinyML an e�ective solution. As the IoT devices are usually distributed and may be

powered by batteries, they must consume the minimum energy possible. A key point in TinyML algorithm

designing is to utilize lightweight algorithms suitable for resource-constraint hardware. This means that the

machine learning models must be small enough to match the hardware features like RAM, ash memory, clock,

and CPU to achieve the expected PC. In previous studies, to implement �re detection algorithms, various

models of RPi have been used on the edge, which is considered power-hungry hardware in comparison to

other boards like Arduino Nano 33 BLE [50], and Sparkfun edge [51], which are capable of inferencing ML

algorithms. As a result, by TinyML, we mean the hardware which consumes less than 100 mW.

One of the most critical resources for portable devices, including UAVs, is the battery. Less PC results

in longer battery life and an extended ight time. Considering this fact, the substitution of the processing

unit of the UAV with one consuming less power seems sensible, where applicable. In this work, we work

on wild�re detection and surveillance as our case study, and we will show that by using an extra low-

power microcontroller, we can still successfully do the same task while decreasing the computation unit PC

signi�cantly.

Our used network consists of convolution layers in addition to pooling, dropout, and dense layers. Fig. 3.3

shows the architecture of this network. To �nd the most e�cient network for our problem, several parameters

have been measured, including RAM and ash memory that the model occupies, plus the inference time.

Also, the confusion matrices have been computed to validate the output results. Based on the event that the

edge node is looking for, di�erent parameters of the confusion matrix can be more important. In the case of

wild�re detection, in addition to true positives, the number of false negatives is of high importance. As if

there is a wild�re and the UAV passes by, it can end in an environmental disaster.

As it can be seen in Fig. 3.3, there is a convolution layer as the �rst layer. To assess the e�ect of the
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Figure 3.2: Overview of the TinySurveillance algorithm

complexity of the network on other parameters like model performance, RAM, ash memory, and inference

time, we run an experiment that either change the number of convolution layers or the number of nodes in

a convolution layer. Table. 5.1 compare various networks that can be used.

Despite platforms like RPi, which are able to run an operating system and then perform numerous tasks,

including computational and graphical, the Arduino Nano 33 abilities are considerably limited. That is to

say, it only runs a single loop in which one or more algorithms are implemented. The number of algorithms

depends on the RAM and Flash memory that they utilize. In case of wild�re detection, After initialization of

the camera and Tensorow settings, images will be captured and analyzed until the event is detected. Then,

the images suspected to involve a wild�re will be transmitted to the server for further analysis. If the server

con�rms the results of the edge node, a con�rmation will be sent, which changes the edge node mode to

surveillance. In this stage, the �re detection algorithm will no longer run, and only the captured images will

be transmitted using our image sending algorithm, which will be discussed. The order of tasks being done

in Arduino Nano 33 can be seen in the Algorithm. 1

3.2 Result Validation

As the algorithm which detects the FFD on UAV is extra lightweight which increases the risk of false alarms,

we take advantage of a validator algorithm to double-check the results of the UAV. After receiving the

event-detection signal from the edge node, the server receives the colored suspected image and runs a more

complicated classi�cation algorithm than one is running on the edge node. There is a wide range of algorithms
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Algorithm 1 Arduino Nano 33 Code

SETUP

Tensorow Initialization

Camera Initialization

LOOP

Capture Image

Return Status

Running NN model with caputured image

Return probability of each class

Detection Responder

Send Samples to ServerIF event is detected

Check for Server Signals

Mode = Surveillance IF results are validated

IF Mode = Surveillance

Run Image transmission algorithm

that can be implemented for this task. As there is no limitation on the FFD algorithms for validation on the

server, any state-of-the-art algorithms can be utilized.

After classifying the received image, in case it is detected as the Fire class, by sending a signal, the mode

of the edge node will be changed to the surveillance in which the UAV only sends images with its prede�ned

algorithm. Otherwise, the edge node will continue capturing images and running the classi�cation algorithm.

It is worth mentioning that in this stage, only a sample will be sent by the edge node, and the surveillance

step will only be started if the server con�rms the edge node classi�cation results. As a result, this step does

not add to the UAV PC.

3.3 UAV Surveillance Mode

Entering the surveillance mode, the �re detection algorithm will be bypassed and substituted with an image

transmission algorithm. Inspired by [23], [52] not all the color channels will be sent during transmission.

YCbCr is a color space that represents an image using three channels of luminance, chroma blue, and

chroma red. The �rst parameter shows the light intensity or commonly known as a grayscale image, while

the two other channels provide the color information. Fig. 3.4 shows the 3 channels of the YCbCr color space

of a captured image in which Y stores the grayscale information and the other two channel stores the color

information. Then, instead of continuously sending all the 3 channels of images, Only the Y channel is sent,

and periodically a colored image is transmitted, too. As a result, we de�ne theN parameter, which shows
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Figure 3.3: Tiny ML Neural Network Architecture

that having sent N grayscale images, one colored image needs to be sent. This parameter would signi�cantly

a�ect the PC of the edge node as the higherN results in less data transmission. After sending a group of

images which includesN non-colored images and one colored image, the process will be repeated. The e�ect

of N is shown in Fig. 3.5. Note that saturation in PC can be seen with higher numbers ofN . Therefore, there

should be a balance betweenN and the image quality since a higherN would decrease the image quality.

The novelty of our work in comparison to the [23] and [52] is that in these work, the missing color

information is recovered by motion estimation methods by referencing the colored image. In this method,

the N cannot go above a limit as the grayscale frames are highly dependent on the color channels of the

reference image, and their color is simply a position shift in their colored channels. This means that they

compare two di�erent frames of a video and, based on the movement patterns of pixels in grayscale images,

move the pixels of the color channels. It is clear that in cases in which the di�erence between two frames is

considered, this type of algorithm does not perform well. However, in our method, a deep learning method is
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