
Measuring and Characterizing (mis)compliance of

the Android permission system

A thesis submitted to the

College of Graduate and Postdoctoral Studies

in partial fulfillment of the requirements

for the degree of Master of Science

in the Department of Computer Science

University of Saskatchewan

Saskatoon

By

Anna Barzolevskaia

©Anna Barzolevskaia, April 2023. All rights reserved.

Unless otherwise noted, copyright of the material in this thesis belongs to

the author.

Permission to Use

In presenting this thesis in partial fulfillment of the requirements for a Postgraduate degree from the University

of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection.

I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly

purposes may be granted by the professor or professors who supervised my thesis work or, in their absence,

by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood

that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed

without my written permission. It is also understood that due recognition shall be given to me and to the

University of Saskatchewan in any scholarly use which may be made of any material in my thesis.

Disclaimer

Reference in this thesis to any specific commercial products, process, or service by trade name, trademark,

manufacturer, or otherwise, does not constitute or imply its endorsement, recommendation, or favoring by

the University of Saskatchewan. The views and opinions of the author expressed herein do not state or

reflect those of the University of Saskatchewan, and shall not be used for advertising or product endorsement

purposes.

Requests for permission to copy or to make other uses of materials in this thesis in whole or part should be

addressed to:

Head of the Department of Computer Science

176 Thorvaldson Building, 110 Science Place

University of Saskatchewan

Saskatoon, Saskatchewan S7N 5C9 Canada

OR

Dean

College of Graduate and Postdoctoral Studies

University of Saskatchewan

116 Thorvaldson Building, 110 Science Place

Saskatoon, Saskatchewan S7N 5C9 Canada

i

Abstract

Within the Android mobile operating system, Android permissions act as a system of safeguards designed

to restrict access to potentially sensitive data and privileged components. Multiple research studies indicate

flaws and limitations of the Android permission system, prompting Google to implement a more regulated and

fine-grained permission model. In spite of its newly-introduced complexity, misgranted permissions continue

to present a significant risk to users.

We present research on theoretical and practical misuse of permissions using our methodology that lever-

ages unified permissions and call mappings. To guide the automated evaluation of permission use and

compliance in Android apps, we develop PChecker, a tool that reports permissions requested by and granted

to Android devices.

We evaluate four versions of the Android Open Source Project code (major versions 10–13) and shed

light on the prevalence of discrepancies between the official Android guidelines for permissions and their

implementation in the Android platform source code. We use PChecker to analyze the permission use of

3,681 Android apps showing the common prevalence and occasional severity of non-compliance in real-world

scenarios.

ii

Acknowledgements

I’m extremely grateful to my supervisor, Dr. Natalia Stakhanova, for giving me the opportunity to study

at the University of Saskatchewan, while also guiding and supporting me all the way throughout.

I am also grateful to the amazing people at the Student Wellness Centre for helping me manage my mental

and physical health during my most difficult times.

iii

Contents

Permission to Use . i

Abstract . ii

Acknowledgements . iii

Contents . iv

List of Tables . vi

List of Figures . vii

1 Introduction . 1

2 Background and related work . 3
2.1 Background . 3
2.2 Related Work . 5

3 Android mappings framework . 11
3.1 Building the unified permission mapping . 11
3.2 Building the unified guarded call mapping . 12
3.3 An approach for automated app analysis: PChecker . 14

4 Findings of theoretical analysis . 16
4.1 Retrieved permission categories . 16

4.1.1 Restriction . 16
4.1.2 Tag . 18
4.1.3 Introduced . 19
4.1.4 Deprecated . 19
4.1.5 Protection . 19
4.1.6 Type . 20
4.1.7 Status . 20
4.1.8 Usage . 21

4.2 Permission transition across Android versions . 21
4.3 Permission-labelling analysis . 24
4.4 Permission-labelling conflicts . 25
4.5 Element-Permission inconsistencies . 28

5 Results of practical analysis . 32
5.1 Experimental analysis with PChecker . 32
5.2 Benchmark app analysis . 33
5.3 Automated analysis . 34

5.3.1 Requested permissions . 35
5.3.2 Granted permissions . 36
5.3.3 Undefined permissions . 39

6 Conclusion and discussion . 41
6.1 Summary . 41

6.1.1 Summary of contributions . 41
6.1.2 Discussion . 41

iv

6.2 Future work . 43

References . 44

Appendix A Unified permission mapping example . 50

Appendix B Unified guarded call mapping example . 51

Appendix C Conflicts in the Android 13 Manifest . 52

v

List of Tables

2.1 Denominations of Android versions . 4

4.1 Counts of restriction categories for permissions . 18
4.2 Individual permission transitions between restriction list categories 22
4.3 Combinations of permission attributes . 23
4.4 Discovered permission labelling conflicts . 26
4.5 Transition of blacklist permissions across versions . 28
4.6 Restriction categories of elements present in source code . 28
4.7 Overview of discrepancies between element and permission restrictions. 31

5.1 Permissions granted to the testing app (benchmark analysis) 33
5.2 The summary of Android apps . 34
5.3 Results of the automated analysis of Android apps . 35
5.4 Permission violations in practice . 36
5.5 Granted to APKs permissions with conflicting combinations 38
5.6 Undefined permissions in APKs . 39

vi

List of Figures

3.1 The flow of the analysis . 12
3.2 An example of a variable protected by @RequiresPermission tag 13

4.1 Android permission annotations in AndroidManifest.xml files and restrictions lists. 17

A.1 An entry of the Unified permission mapping . 50

B.1 An entry of the Unified guarded call mapping . 51

vii

1 Introduction

Mobile phones transformed how people communicate and share information. With ubiquitous flexibility,

Android has become one of the most widely used mobile operating systems (OS) in the world. The convenient

and extensive access to phone resources has quickly revealed shortcomings of the existing protections. Among

them, Android permissions is a fundamental system of controls designed to restrict an application’s access

to potentially sensitive data and privileged components.

Numerous studies pointed out limitations of the Android permission system [2,5,6,14,63,80]. For exam-

ple, early Android versions did not regulate the use of privileged resources, allowing any application (app)

to declare permissions and gain access to any data or functionality on the device. This resulted in privacy

leaks [75], unrestricted access to advanced functionalities [8, 46], overprivileged apps that possess unneces-

sary access to resources [47] and exploitable weaknesses [79]. Allowing users to grant or reject permissions

requested by an app did not solve the security problems. As studies showed, users continue to have a vague

understanding of what permissions should or should not be granted to apps [84].

The Android permission system has evolved significantly to a more regulated and fine-grained permission

model. With Android 9, restrictions on non-SDK (Software Development Kit) interfaces were introduced,

regulating access to parts of the Android platform for applications and services. The subsequent versions

expanded these restrictions, further covering official SDK interfaces and non-SDK interfaces, i.e., internal,

unstable, testing, and temporary interfaces.

Despite a more sophisticated access system, the official documentation for Android permissions, including

their functionality, requirements, and use cases, has been historically lacking (e.g., [47]), with the permissions’

difference between versions largely undefined or vaguely stated. This lack of information leads to ambiguity,

which creates the potential for misuse and improper implementation, ultimately resulting in security risks.

In this research, we analyze permissions in Android versions 10–13 from theoretical and practical per-

spectives. We investigate the differences between the official Android guidelines for permissions versus their

implementation in the Android platform source code. We further explore how these discrepancies appear

in practice in Android apps created by third-party developers. To understand the current practical state

of permissions, we analyze the source code of four Android versions, 10–13 (APIs 29, 30, 31, 33), extract-

ing permissions and their properties as noted by the Android developers, as well as some elements guarded

by permissions. We further complement this information with the official Android documentation and re-

striction information for the Android platform to create unified permission and guarded call mappings that

identify theoretical requirements of permissions and calls. These mappings simplify the analysis of protec-

1

tions provided by the Android permission system and reveal existing inconsistencies between permissions and

calls.

To further understand the presence and scope of inconsistencies in practice, we designed and developed a

tool, PChecker, that leverages our mappings to review the permissions requested by and granted to Android

apps in comparison to the utilized SDK and host devices.

In summary, this work presents three contributions:

• We derive a unified permission mapping that enables domain experts to analyze the consistency of

protections provided by the Android permission system. We show a mostly hidden internal categorization

of permissions adopted by Android developers. Our analysis illustrates that the internal permission

categorization is more complex than what is conveyed by the official Android documentation, which is

incomplete, inconsistent, and sometimes contradictory with the actual implementation. For example, we

discover permissions present in the Android platform source code but absent from any documentation.

We identify thirteen types and 1,388 cases of contradictions between the official documentation and the

Android platform source code. This is the first work to systematically outline the existing categorization

and uncover security inconsistencies between the Android documentation and its permission system

implementation that persist across different versions.

• We derive a unified guarded call mapping that, together with the unified permission mapping, reveals

inconsistencies in protections declared by the Android platform. We identified 3,362 instances of dis-

crepancies between the SDK (and non-SDK) interface restrictions and the corresponding permission

restrictions across the analyzed Android versions.

• We develop PChecker to evaluate permissions requested and granted to third-party Android apps. We

conduct an analysis of 3,681 apps, discovering 3,666 instances of discrepancies related to permissions

requested by apps, and another 3,736 discrepancies with permissions automatically granted to apps.

Overall, we found at least one of these issues in each of 538 apps.

Our findings highlight alarming patterns and shed light on the existing misleading and contradicting guid-

ance given to Android app developers. This status quo emphasizes the challenges in reality for creating fully

permission-compliant apps as demonstrated by the pervasiveness of permission non-compliance in Android

apps. Complete and relevant documentation falls behind the rapid development of the Android

platform, introducing implementation ambiguity, disjointed security enforcement, compatibil-

ity issues and practical oversights that hinder Android development, third-party application

development and relevant research.

All the code used to create the unified mappings and the PChecker tool are available on the Github page:

https://github.com/thecyberlab/pchecker.

2

2 Background and related work

Before delving into inconsistent and contradictory permissions structure in Android, we take a moment

to explore Android, its structure, risks, and other works in studying permissions. Knowing this illuminates

the novelty and value of our work.

2.1 Background

Android is an operating system specifically designed for mobile devices such as tablets and smartphones. It is

based on a modified version of the Linux kernel and is mainly developed by Google under the name Android

Open Source Project (AOSP) [51].

Android applications (apps) are distributed in the .apk file format. Each .apk file, when decompressed,

includes one or multiple .dex files that contain the logic of an app in the form of Dalvik bytecode executed using

an Android-Runtime environment (ART). The managed (virtualized) Dalvik bytecode execution environment

is the primary engine for Android applications. The Android application programming interface (API) is

the set of Android platform interfaces exposed to applications running in the managed runtime environment.

The metadata of the app used by the Android OS is contained in the AndroidManifest.xml file found in the

.apk.

The Android OS is iterated through major versions expressed as real numbers at first (for example,

Android 4.2). Each major change in the Android OS is referred to by its index number called API (Application

Programming Interface) level, or SDK version, starting at 1 and, at the time of writing, ending at 33

(Android 13.0). Each major version also has a code name (and code letters) that follows an alphabetic

pattern (Android 8 is Oreo, or O). All these denominations are used by Android in the documentation and

source code, and, consequently, are used throughout this work. The naming reference for the relevant versions

is showcased in Table 2.1.

As OS architecture, logic, and available functionality change between Android versions, so do the require-

ments for applications suited to install and run on Android devices. It would be impractical for every app

to be optimized for each of the 33 API levels. The different version denominations are shown in Table 2.1

As such, apps are expected to be built for a specific range of API levels. This range is expected to be

displayed in the Manifest file via minSdkVersion, targetSdkVersion (or compileSdkVersion when used

during app compilation) and maxSdkVersion fields [32]. These fields determine the expected configuration

aspects of the APK, such as permissions, features, etc. In practice, however, the boundaries minSdkVersion

3

Table 2.1: Denominations of Android versions

Android Version API Level Letter Code Release Year

6 23 M 2015

7 24,25 N 2016

8 26,27 O 2017

9 28 P 2018

10 29 Q 2019

11 30 R 2020

12 31,32 S 2021,2022

13 33 T 2022

and maxSdkVersion may be omitted when building the application, as testing the application on different

versions requires resources and these values may limit the advertisement of the app on excluded OS versions.

In many cases, the Manifest file contains only the targetSdkVersion.

Android permissions is a system of safeguards implemented as an Access Control List (ACL) [8] that

is designed to restrict access to potentially sensitive data and privileged components. If an application

requires restricted device functionality to operate, the corresponding permissions should be declared in the

app’s manifest file for the host OS to attempt to grant these permissions to the app. Android 1–7 did

not regulate the use of privileges: any app could declare any permission and gain access to any data or

functionality of the device. Android 8 introduced the allowlist [78], where privileged/system apps (mainly

OEMs— original equipment manufacturers) had to declare permissions in the system configuration XML files.

With API 29, the permission system was changed and restrictions on non-SDK interfaces were introduced,

regulating access to parts of the Android platform for applications and services [35]. These restrictions took

the form of restriction lists. With Android 10, this system was expanded, covering all official (SDK interfaces)

and internal/unstable/test/temporary interfaces (non-SDK interfaces), including permissions, with restricted

permissions detailed in both manifest and restriction-lists files.

Permission categorization: Historically, Android differentiated permissions with respect to the nec-

essary protection level as normal permissions, i.e., permissions to resources with minimal risk, dangerous

permissions that are associated with elevated risk (e.g., access to personal data), signature permissions which

are granted to apps from the same developer, and signature|privileged (formerly SignatureOrSystem)

that regulate access to privileged resources and are allocated for apps installed in the Android system image.

The Android permission system has significantly evolved over the years. At first, permissions were only

granted during app installation time. Starting from Android 6, dangerous permissions were granted at

runtime of the application and starting with Android 9 (API level 28), Android has further restricted the

use of permissions tied to elevated risks.

Currently, Android official documentation groups permissions as follows [31]:

4

• Install-time permissions that are granted to the application when it is installed, these include permis-

sions for resources that do not expose sensitive data or critical functions.

• Runtime permissions allow access to restricted data and functions, such as calls, notifications, GPS

location, etc. These require user’s direct approval to be granted. These permissions are requested at

the runtime of the application.

• Special permissions allowed for use only by the Android platform and OEMs.

These Android-defined permissions facilitate access to system resources for developers.

Beyond these, Android allows developers to include application-defined permissions known as custom per-

missions. Custom permissions allow apps to share their functionality with other apps, including those signed

with a trusted certificate, which are normally isolated from each other [52]. In this work, we focus specifically

on Android-defined permissions.

Naming convention: Android permissions must conform to a naming convention. A permission should

be prefixed with an app’s package name (or android for Android-defined permissions), with reverse-domain-

style naming. The prefix should be followed by .permission., and then a description of the capability that

the permission represents, in UPPER SNAKE CASE [28]. For example, android.permission.SYSTEM CAMERA.

Third-party developers are expected to declare a list of required permissions in the AndroidManifest.xml

file, otherwise their app will not gain access to the resources of the device. The corresponding APIs that

govern access are then invoked by the app if the necessary permissions are granted.

With this understanding of Android permissions, we can now examine previous work on recognizing the

limitations of the system.

2.2 Related Work

Since the creation of Android in 2008, there have been numerous studies focusing on Android security in

general and vulnerabilities of the existing access controls in particular. We report on seven general approaches

that researchers pursued regarding Android security in general and permissions in particular:

• Earlier works reviewed the advantages and drawbacks of the permission model implemented by Android.

• Attention was also given to how end-users perceive permissions and react to permission requests.

• Numerous studies pointed out that developers struggle to keep up with the rapid API changes, resulting

in compatibility issues.

• Applications tend to request more permissions than they actually need, expanding the attack surface.

• This problem escalates on vendor-customized Android images.

5

• The complex, unstable and flexible nature of Android is constantly exploited by malicious apps, which

employ diverse techniques to force users to reveal sensitive data.

• The Android platform code itself has been extensively analyzed for security loopholes.

The early studies primarily aimed to understand the use of permissions by applications, focusing mostly

on documented permissions. Enck et al. [46] proposed to detect malicious Android applications based on

requested permissions. Jiao et al. [59] analyzed function calls using sensitive permissions to detect malware.

Barrera et al. [8] visualized permissions of 1,100 applications to explore permission usage patterns of appli-

cations with similar characteristics. They noted that some permissions provide much broader functionality

coverage than others, and proposed a hierarchical permission model for more-limited purposeful access. Sim-

ilarly, Jeon et al. [58] proposed a more fine-grained permission model with sub-permissions and a tool to infer

the proposed permissions for already existing apps. Book et al. [12] discovered that the use of dangerous

permissions in libraries and apps increases over time. Additionally, advertisement libraries could abuse the

permissions of the host apps to gather sensitive data, such as information about the device, network, location,

etc. [50].

Many mobile users were found to be unaware of privacy implications concerning app permissions [61].

Wijesekera et al. [88] examined user attitudes towards unexpected permission requests made by apps and

found that users would block one-third of all permission requests if given the ability to do so. Another study

by Bonné et al. [11] explored user behaviour when presented with runtime permission requests. They found

that, overall, 84% of requests were granted, and that users denied permissions they thought the app did

not need to achieve the desired functionality and granted permissions based on their perception of the app’s

functionality. Moreover, out of all permissions granted, 10% were described as grudgingly accepted. Bianchi

et al. [10] highlight that Android lacks GUI confirmation of the origin of an app, which allows malicious

applications to mimic legitimate apps and confuse users with phishing (social engineering) and click-jacking

(user interface manipulation) attacks into giving away sensitive information. They also propose market-level

and on-device defence tools to mitigate such attacks.

In an attempt to provide user-controlled limitations on applications, Nauman et al. [75] developed Apex,

an extension to the Android permission framework that allowed the user to define application runtime con-

straints. Lin et al. [65] proposed user privacy controls by determining the purpose of requested permissions

in third-party apps and enabling the user to make more informed security decisions. Eling et al. [44] modified

runtime permission requests to be more informative about the app’s intentions and proved that informed

users are more likely to deny permission requests. Later, Liu et al. [69] conducted a field study where An-

droid users interacted with a Personalized Privacy Assistant which offered privacy-related suggestions on

application permissions. Peddinti et al. [76] proposed a comparative mechanism for Google Play, which

would evaluate permissions requested by an app against functionally similar apps and identify permissions

that those apps rarely request. By presenting unnecessary, according to the competition, permissions, they

nudged developers to remove such permissions.

6

Improper security policy enforcement has been explored at the Android framework level. Sellwood et

al. [79] analyzed how permission architecture changes between OS versions and presented an app that activates

malicious behaviour after an OS upgrade. AceDroid [1] studies systematic categorization of access control

in the Android framework for versions 5–7. Several papers [13, 54, 62, 74, 90] explore compatibility issues

resulting from rapid changes to the Android platform and its APIs. The extent of the dependence on

platform APIs was proven to correlate to the likelihood of the emergence of defects in application source

code [81]. The time spread of these publications (2013–2020) also indicates that these issues persist over

Android’s entire existence. The constant evolution of the framework also produces deprecated APIs which

present compatibility and maintenance challenges [64]. These changes also make the task of keeping complete,

relevant and accurate extremely difficult [47, 64]. Besides, changes in APIs often negatively impact third-

party applications, which cause frustration in users from bugs and crashes after system updates [66]. Liu et

al. [70] recently reported that most third-party applications use silently-evolved interfaces that lack updated

documentation. With Android documentation severely lacking and obsolete, developers turn to forums and

message boards for answers to questions about API changes [67]. Solutions were also introduced for automated

compatibility-issue discovery.

Overprivileged applications have always posed risks to devices. Felt et al. [48] demonstrated that a

permission granted to one application may be re-delegated to another application, which allowed the first

application to perform privileged actions for the second app, so a single overprivileged application on a

device may be exploited by malicious apps, expanding the attack surface. The dangers of overprivileged

applications were studied by Wei et al. [87]. They analyzed how Android permissions are evolving over

versions and concluded that the permissions system expands to accommodate access to newly-implemented

functionality while keeping older permissions with broad access unchanged. They also noted that developers

do not follow the principle of least privilege. A concerning example was presented by Fratantonio et al. [49].

An app with two permissions, SYSTEM ALERT WINDOW and BIND ACCESSIBILITY SERVICE could take control of the

UI feedback loop and execute major attacks without the user’s knowledge, such as stealing passwords and

PINs, enabling permissions, intercepting 2FA tokens, accessing the Internet, etc. This vulnerability was a

design issue and could not be quickly addressed within the AOSP, as it exploited the design flaws of core

Android components.

The goal of breaking down executable code can be achieved via static and dynamic analyses. The static

analysis does not perform code execution and focuses on the structure and logic of the written code and

explores all possible routes the program could take. It finds issue occurrences to identify problems. In

contrast, the dynamic analysis explores all the outcomes the program achieves during execution on runtime.

It identifies problems to interpret issue occurrences. Felt et al [47] introduced the Stowaway tool to detect

overprivileged applications targeting Android 2.2. Stowaway tracks the API calls made by an application

to determine the full set of required permissions. Due to the dynamic nature of the analysis, Stowaway

produces an incomplete set of permissions. PScout [5], on the other hand, used pure static analysis to

7

identify all actions that require permissions and therefore generated a more complete permissions map, i.e.,

correspondence between API calls to specific permissions in Android versions 2.2–4. Similarly, using path-

sensitive analysis, Arcade [2] attempts to generate a list of permissions an app needs to estimate the minimum

required permissions, then compares the list to developer-requested permissions. Axplorer [6] improves these

existing efforts by statically generating a permission map for the Android framework. A static analysis tool

FicFinder [86] was designed to detect compatibility issues in Android applications resulting from API changes

based on the associated context. Yang et al. [91] proposed a framework to detect instances in apps where

they use resources modified between API updates. Dynamo [16] leveraged dynamic instrumentation and

gray-box fuzzing to extract permission mappings through path-sensitive analysis.

Moreover, many Android images are vendor-customized, which introduces even more ambiguity to the

security state of devices. Wu et al. [89] analyzed applications on devices customized by multiple vendors.

They reported that the majority of pre-installed applications were found to be overprivileged as a direct

result of vendor customization, which is also a major reason for newly-introduced vulnerabilities for most

vendors.

A static analysis system FIRMSCOPE proposed later by Elsabagh et al. [45] was also used to uncover

privilege escalation vulnerabilities in pre-installed apps. BigMAC [57] uses static firmware and Android

domain knowledge to model the security policy state of a running Android image to develop attack queries

and identify vulnerable interfaces. A separate problem of custom permissions being treated the same way

as system permissions was highlighted by Tuncay et al. [82]. They proposed Cusper, a modular permission

system, which prevents the abuse of custom permissions to gain access to protected resources.

In the following works, a “permission map” implies call-to-permission relationships, that is, which per-

missions are required to access a particular interface. This concept corresponds to our guarded call mapping.

Third-party application marketplaces have been historically proven to host repackaged legitimate apps

with added backdoors and malicious payloads [94]. Nevertheless, users assume that marketplaces analyze and

reject malicious applications [61]. Although this assumption became more or less true in recent years, with

Google Play restricting applications that target lower API levels and can abuse eased security requirements

introduced for compatibility purposes [42], malicious applications that exploit more recent vulnerabilities

may still be uploaded to the official markets [49], and third-party marketplaces are subjected to many fewer

restrictions and scrutiny.

There have been many works that attempted to detect vulnerable and malicious third-party applications.

CHEX [71] performs static analysis of apps with modelling asynchronous execution to detect hijack-enabling

flows that introduce hijacking vulnerabilities where improper access control implementations expose sensitive

recourses. FlowDroid [4] performs static context-sensitive taint analysis that ensures proper user input

filtering in Android applications. Boxify [7] is a sandboxing environment created for app virtualization and

testing, which does not require any modification of the tested app. Wang et al. [85] created LibCage to

mitigate permission abuse by third-party libraries. Karbab et al. [60] used patterns in API method calls to

8

flag malicious Android applications. Pham et al. [77], contrariwise, attempt to isolate sensitive applications

from outside access by presenting a container app that prevents information gathering employed by other

packages. Similarly, MockDroid [9] was an early attempt to artificially limit application access to sensitive

resources. Calciati et al. [14] report that apps may request new dangerous permissions between updates,

which could be automatically granted by the OS if the app already possesses a granted permission in the

same permission group.

One of the challenges in detecting malware in applications is determining whether a security-sensitive

action is benign and corresponds to core app functionality, or malicious in nature and is masked as benign.

To solve this problem, a static analysis approach implemented in AppContext [93] evaluates the context of

security-sensitive behaviours, such as events and conditions that trigger them. For example, an activity that

only triggers at night has the potential to be malicious, as this could be an attempt to miss the user’s view.

Over time, security research shifted to focus on the Android platform itself. Centaur [72] was a system

designed for symbolic execution of the Android framework to discover vulnerabilities. After the update that

added the runtime permissions, critiques of the Android permission model were published by Alepis et al. and

Tuncay [3,83]. Chang et al. [15] discovered that implicit service invocations forbidden by Android due to the

risk of hijacking attacks are still present in popular apps 30 months later. ACMiner [53] evaluates Android’s

access control enforcement rules by performing a consistency analysis of authorization checks by comparing

them between possible service entry points. JGREAnalyzer [56] was created to detect, via call graph analysis,

APIs vulnerable to JGR (Java Native Interface Global Reference) exhaustion DoS attacks after Android

attempted to limit interface access with non-SDK restriction lists, expected to limit JNI reflections (indirect

access to restricted resources trough intermediate services). FANS [68] employed automated generation-based

fuzzing to detect vulnerabilities in Android system services. He et al. [55] leveraged static analysis to discover

inconsistent security enforcement for non-SDK APIs. Kratos [80] leveraged permission mapping to discover

vulnerabilities and inconsistent security enforcement by comparing permission requirements through possible

access paths. Our work does not perform execution analysis but studies the state of available Android

documentation and its interactions with practical implementations of security enforcement. We compare

the treatment of code elements according to permissions and restriction lists: we find a subset of interfaces

directly intended to be accessed with particular permissions and evaluate the consistency between restriction

lists assigned and permissions required.

The vast majority of the mentioned approaches aim to estimate a permission map allowing one to de-

termine over/under-privileged applications. The Android security model was formally outlined by Google

developers [73], however, the section focusing on permissions themselves is rather brief and, therefore, in-

complete. Permissions in these cases are analyzed as individual requirements for API access. We, on the

other hand, focus on the inconsistency in functional and descriptive attributes of permissions as they are

defined by Android and allowed for use by third-party developers. The evolution of non-SDK restrictions in

the Android platform was previously studied [63,92]. We, therefore, limit our focus to the AOSP source code

9

and documentation changes that affect the analysis of permissions.

10

3 Android mappings framework

This chapter outlines the theoretical and practical frameworks constructed with the goal of character-

izing Android permissions, characterizing interfaces that are guarded by permissions and analyzing which

permissions are requested by and granted to third-party applications recently collected in the wild.

Close inspection of the available Android documentation and Android API source code suggests that

the official documentation describing Android permissions and interfaces available for third-party developers

is limited and often contradictory [70]. We therefore empirically determine the available Android system

permissions and interfaces. We leverage three sources: Android source code for four API versions; official

documentation; and Google restrictions lists. We parsed the source code of four Android versions 10–13:

• android10-s3-release (API 29);

• android11-s1-release (API 30);

• android12-s5-release (API 31);

• android13-s3-release (API 33).

We extracted permissions from the system’s Android Manifest file [29], within Android Open Source

Project (AOSP). Note, that version 12.1 (API 32) is treated similarly to API 31 as we observed no major

changes compared to API 31 and no restriction lists were offered by Google. The flow of the analysis is shown

in Figure 3.1, and is explained below.

3.1 Building the unified permission mapping

Since third-party developers are expected to declare a list of required permissions in the AndroidManifest

file, we identified and extracted string literals following the permission naming convention.

We processed AndroidManifest files retrieved from the four latest AOSP snapshots for each Android

version 10–13. For that, we wrote our own Python code that extracted the permissions and comments

present in the source code by following the XML file structure demonstrated in Figure 4.1.

The collected permissions were then mapped to permission categories. As a starting point, we used the

categorization present in the official documentation and in the Android non-SDK restriction lists published

by Google, which describe the general availability of elements in the Android OS [35]. In this context, an

element is either an interface or a variable defined in the AOSP source code. These lists seem to be generated

11

create the API-
specific permission

mapping

Android Open Source Project (AOSP) code
API 29, 30, 31, 33

Android official
documentation

Google
restriction lists

parse AndroidManifest.xml
files

extract permissions
<permission android:name=.../>

extract comments

combine unified permission
mapping per API

combine unified guarded call
mapping per API

extract methods with
@RequiresPermission tag

create the API-
specific interface

mapping

extract required permissions

extract comments

Figure 3.1: The flow of the analysis

automatically during code compilation and each individual file represents only a subset of the officially posted

non-SDK restriction lists. This mapping produced a theoretical documented categorization of permissions

from an official perspective available as a guide to third-party developers.

We further complemented this mapping by deriving attributes that are actually present and/or described

within the API source code. The attributes and their categories are described in Section 4.1.

We manually verified and corrected when needed the assignment of permissions to the categories (Sec-

tion 4.1) produced by our analysis. This step took us about 18 hours to complete: correctly identifying

and recording the usage attribute (to whom a permission is expected to be available) from the plain-text

comments proved to be the most time-consuming task. We further manually supplemented the collected

permissions with information from the public documentation if it was available.

This process produced 775 individual permissions for all four analyzed APIs, including 533 for API 29,

590 for API 30, 689 for API 31/32, and 765 for API 33. Out of 765 permissions found in API 33 source code,

206 of them were documented in the official Android documentation that covers the latest version [29].

The derived categorization system together with the corresponding permissions present in each API

formed the API permission mappings. We combined them to comprise the unified permission mapping. An

example of an entry is displayed in Appendix A. This unified mapping represents a theoretical (based on

established ground truths) view of permissions and the protections they intend to provide across Android

API versions.

3.2 Building the unified guarded call mapping

Android permissions guard access to the SDK and non-SDK elements available within the Android platform.

To further understand how the theoretical permission protections are applied by the Android platform, we

12

Figure 3.2: An example of a variable protected by @RequiresPermission tag

leveraged static analysis, as explained below, to inspect requirements for the SDK and non-SDK elements

protected by permissions. The results were applied to the restriction lists featuring calls to the SDK and

non-SDK elements with their corresponding assignment to the restriction categories.

Specifically, we extracted all elements present in the restriction lists. We then parsed four versions of the

Android platform source code (API levels 29, 30, 31, 33) and retrieved all elements that were accompanied

by the @RequiresPermission tag [33]. According to documentation, this tag indicates that the following

element requires permissions if its declaration is preceded by this tag. An example of this tag usage is

presented in Figure 3.2. There are three possible scenarios: single permission is needed, multiple permissions

are required (specified by the allOf field), or a list of permissions is necessary, where any of them can be used

to invoke a method (indicated by the anyOf field). For each @RequiresPermission tag found, we collected

the required permissions, the name of the element, the types of parameters it expects to receive if it is a

method, and the path to the file it was found in, starting from the base of the build directory. We comprised

this list retroactively while attempting to connect the elements to their appearances in the restriction lists,

the process for which is described further. We wrote our own Python code for this task to extract the relevant

strings by leveraging Java syntax rules.

Having the source code elements that require permissions, we had to find their corresponding interfaces in

the restriction lists. We matched the collected interfaces and methods extracted from the code by comparing

the invocation path found in the restriction list with the path collected during code analysis, the values of

the parent class, the element name, and the input parameter types. The following interpretation was inferred

by manually comparing some restriction lists file lines to their source code counterparts. Each line of a

restriction list file is of the two following structures for methods and variables:

relative path to file $ (dollar sign) optional parent class ;–> (semi-colon, dash, more-than sign)

element name OR <init> (less-than sign, ”init”, more-than sign) if class initialization

(input parameter types) (types in brackets) if method OR : (colon) if variable output value types if

method OR value type if variable , (comma) restriction lists separated by (comma) (without any of the

spaces and comments in italic added for reading convenience).

In order to attribute an interface to an element, we sorted interfaces by their relative paths. Then, for

each retrieved source code element, we pulled interfaces, the relative paths of which were present at the

end of the element’s path. We iterated through the interfaces and compared the values of parent class,

element name and input parameter types. For example, an element section of the restriction list pseudo-line

”someMethod(I[IZLjava/lang/String;)I” means that the method expects parameters int, int array, boolean,

String in that order, and the method returns a single int value. Each L indicates a following non-primitive

13

data reference also present in the restriction lists file, each of them ending with ”;” and starting with one of

the following: Landroid, Ljavax, Ljava, Lcom, Lorg, Llibcore, Lsun, Ldalvik, Ljdk. As for primitive

data types, we inferred their representations as follows: I — int, J — long, Z — boolean, F — float, B —

byte, C — char, D — double, S — short, V — void. A letter-code preceding by a [(square bracket) indicates

that an array of the following data types is expected. Following this logic, we attributed each of the retrieved

source code elements to a single restriction lists file line, which allowed us to transitively connect permission

requirements to interface calls.

The matched methods were further labelled with the corresponding restriction categories. We also col-

lected alternative calls that developers introduced over the versions to gradually replace blocked function-

ality with safer public alternatives. These were obtained from changes to restriction lists published by

Google [38–40], where an alternative to the blocked element was mentioned in plain-text comments. The

collected methods were annotated with alternative calls if present and the corresponding permissions required

for their invocations. This final mapping comprised the unified guarded call mapping. An example of an entry

is displayed in Appendix B.

In Chapter 4, we further analyze these unified permission and call mappings to reveal inconsistencies and

conflicts in the protections expected to be provided by the Android platform.

3.3 An approach for automated app analysis: PChecker

To facilitate automated analysis of apps using our derived mappings, we built the PChecker tool to identify

apps with unexpected use of permissions for a given APK. PChecker retrieves all app permissions and

translates them to our permission mappings according to the Android app target version designated by

targetSdkVersion. The analysis is performed in two stages: (1) permission labelling compliance and (2) a

practical consistency check that examines the permissions requested by an app and those that are granted

to it in practice.

More specifically, given an APK file, PChecker records the supporting metadata using AAPT2 dump

badging command, which extracts information from the APK’s Manifest file [24].

For the practical consistency check, the app is installed on an Android device using Android Debug Bridge

(adb), a command-line tool that enabled us to issue actions on devices [25]. The requested and granted per-

missions are obtained using the adb shell “dumpsys package”, once after installation and once after a simulated

with the adb monkey command pseudo-run [37]. This pseudo-run is performed in order to ensure that the

app can be launched. The parsed permissions are mapped to the unified permission mapping according to

the app’s targetSdkVersion. Since many APKs lack one or more SdkVersion boundaries, we only consider

the targetSdkVersion value as the targeted API level. In cases when the app’s targetSdkVersion is not

specified by developers in the app’s Manifest, we use the targetSdkVersion detected by the OS and returned

by the adb dump. For our evaluation, we used the following devices:

14

• KingPad SA8 (Android 10, API level 29);

• Umidigi A9 Pro (Android 11, API level 30);

• Samsung Galaxy S21 FE 5G (Android 12, API level 31);

• Pixel 7 Pro (Android 13, API level 33).

In its analyses, PChecker evaluates app permissions and how they are handled on different Android devices

according to the theoretical permission conflicts we discovered through analysis of the unified permission and

call mappings.

15

4 Findings of theoretical analysis

Here, we describe, in detail, our methodology for mapping (and later evaluating) Android permissions,

individual and structural changes that affected permissions across Android versions, and give examples of

outdated information we found in official Android documentation, inconsistencies in categorization and access

limitations between permissions and the elements protected by them.

4.1 Retrieved permission categories

Our analysis revealed that the Android platform contains a more sophisticated permission classification

than indicated by Android documentation and it is not fully conveyed to third-party developers. The official

categorization is incomplete and, on many occasions, inconsistent with the treatment of individual permissions

in the source code.

In our analysis, we could classify permissions by the following attributes: Restriction, Tag, Introduced,

Deprecated, Protection, Type, Status and Usage. We will go through these one-by-one in this Chapter.

An example of the source of these attributes is shown in Figure 4.1

4.1.1 Restriction

Starting from Android 9 (API 28), Android began restricting which non-SDK API interfaces third-party apps

may use. The restrictions are enforced in the ART of the application processes. These non-SDK interfaces are

neither documented in the Android framework nor stable. The restrictions lists have since been published

for each major version of Android [35]. Each restriction list includes permissions with the corresponding

interfaces and restriction categories. Officially, the restriction lists include the following categories:

• Blocklist (blacklist) — interfaces inaccessible to third-party developers;

• Conditionally blocked max-x (greylist-max-x) — interfaces usable by apps targeting an API level up

until level x, inaccessible for others above that level. For example, permissions under the category

conditionally blocked max-r should only be used by apps targeting Android 11(R) or lower versions, as

they will consequently be blocked for target version 12(S) or higher;

• Unsupported (greylist) — unrestricted at the time of publishing, but are not included in the documen-

tation, and therefore subject to changes without notice;

• SDK (whitelist) — supported and documented interfaces.

16

Figure 4.1: Android permission annotations in AndroidManifest.xml files and restrictions lists.

Our analysis revealed a few additional restriction lists’ categories for APIs 29–33 including:

• public-api — officially supported SDK interfaces documented in the package index [29];

• sdk — SDK interfaces, the available documentation does not explain how these differ from other groups,

replaced whitelist starting at API 31;

• system-api — non-SDK interfaces, used by system apps and services;

• test-api — interfaces used for internal testing;

• max-target-x — appears to indicate Conditionally blocked max-x interfaces, replaced greylist-max-x

starting at API 31;

• blocked — appears to indicate blacklisted interfaces, replaced blacklist starting at API 31;

• lo-prio - an unclear label that is always combined with max-target-x, appeared at API 31;

• unsupported — appears to indicate greylisted interfaces, replaced greylist starting at API 31;

• removed — an unclear label that is always combined with unsupported, first introduced in API 31.

Given a variety of undocumented labels in the non-SDK restriction lists, we have grouped them into

categories shown in Table 4.1 to facilitate the analysis. Each category represents certain list combinations

pertaining to permissions.

• the public category is characterized by the “public-api” list and includes “public-api,system-api,test-

api,whitelist” and “public-api,sdk,system-api,test-api”;

• the sdk category is derived from “whitelist”/“sdk” lists and includes: “system-api,whitelist”, “system-

api,test-api,whitelist” and “sdk,system-api,test-api”;

17

Table 4.1: Counts of restriction categories for permissions

Category A10(Q) A11(R) A12(S) A13(T)

public 158 166 183 206
sdk 205 241 303 357
blacklist 26 47 69 75
conditional block 139 131 133 127

max O (A8, API 26,27) 139 131 130 124
max P (A9, API 28) 0 0 0 0
max Q (A10, API 29) 0 0 0 0
max R (A11, API 30) 0 0 3 3

unsupported 5 4 1 0
missing 0 1 0 0

Total 533 590 689 765

• the category blacklist is characterized by “blacklist”/“blocked” lists and includes: “blacklist; blacklist,test-

api”, “blocked” and “blocked,test-api”;

• the conditional block category is derived from “greylist”/“max-target” lists and includes: “greylist-

max”, “lo-prio,max-target-x” and “lo-prio,max-target-x,test-api”;

• the unsupported category is derived from “greylist”/“unsupported” lists and includes: “greylist”,

“greylist,test-api” and “removed,unsupported”;

• the missing category includes permissions present in the AndroidManifest, but absent from the restric-

tion lists for that API level.

4.1.2 Tag

“Tags” are annotations that describe the intended usage of permissions and are primarily used for automatic

API parsing of the source code. Although some tags are referenced in the official documentation, there is no

official documentation explaining the functionality of these tags. Android source code contains the following

tags (accompanied by unofficial explanations):

• @hide — indicates permissions that are excluded from the public SDK API and consequently should

not be used by third-party developers;

• @SystemApi — indicates permissions available for internal system developers and, therefore, also not

shown in public SDK APIs, as a result, each permission also has @hide annotation;

• @TestApi — indicates a permission used in testing;

• @deprecated — indicates a deprecated permission;

• @removed — indicates a permission removed from the API;

18

• no tag — the absence of a tag indicates that a permission is a part of the public SDK and is accessible

by all developers.

Permissions may be annotated with these tags in the source code, although this seems to be optional.

In our analysis, we found a few permissions in AOSP API 29 labelled as #SystemApi (note the use of #,

not @). In the later versions, we observed that these permissions were relabelled with the @SystemApi tag.

We assume that the initial labelling was a mistake.

4.1.3 Introduced

The “Introduced” attribute shows an API level, at which the permission was introduced, i.e., its functionality

should not be supported in preceding Android versions. We could not find introduction API levels for many

undocumented permissions, i.e. “from time immemorial”. However, we could infer some introduction API

levels during our manual inspection and comparison of permissions collected from the source code of different

versions of Android. For example, comparing adjacent versions gave us an understanding of which permissions

were likely introduced in the newer versions.

During this process, we also found inconsistencies in the available documentation concerning introduction

levels. For example, the permission READ PRECISE PHONE STATE is claimed to have been added to the OS in API

level 30 (Android 11) in the official documentation, while it has been present in the source code since API

level 29 (Android 10), and the permission READ NEARBY STREAMING POLICY, claimed to have been added in API

level 33 (Android 13) [30] is present in the source code of API level 31 (Android 12). An argument can be

made that the more precise meaning of “Introduced” is “Exposed”, as, in both of these cases, the permission

was at first omitted from the public API generation with the tag @hide, which was later removed.

4.1.4 Deprecated

The “Deprecated” attribute indicates that the permission is outdated. A permission may be deprecated

from a certain API level, meaning its use is accepted, if the targetSdkVersion of an app is lower than the

deprecation API level, and there are no other restrictions for that particular case. Deprecated status may be

noted in the official documentation, tagged, or mentioned in plain text in the source code. As we noticed,

undocumented permissions are often labelled with the ‘deprecated’ status, although no corresponding API

level information is provided. There is no documentation that clearly states what happens if these rules are

not followed.

4.1.5 Protection

“Protection” characterizes risk implied by a requested permission. In the increasing order of severity, per-

missions fall into one and only one of the following base groups [26]:

• normal — have the least risk associated with them;

19

• signature — permission is granted if an application requesting it is signed with the same signing

key/certificate as the app defining it;

• dangerous — allows more substantial access to restricted data and functions, requires user acceptance

at runtime of the application;

• internal — managed internally by the system and only granted according to additional protection

flags;

These base protection levels may be complemented with additional protection flags [26]. As such, protection

level can be represented by a base protection and zero or more flags. Although the documentation mentions

only four base protection levels, in our analysis of the source code, we found another base protection level

‘system’.

• system — an undefined system protection level.

There is no information about its functionality, and it appeared in API 31–33 source code. The permission

is android.permission.SYSTEM CAMERA and has a protection level: system|signature|role.

4.1.6 Type

Each permission in AndroidManifest files from the source code is listed under one of three AndroidManifest

file sections, which we named “Type”:

• Install permissions — supposed to be granted at application installation, their protection levels include

normal and signature;

• Runtime permissions — might only be granted at application runtime by a user, as these permissions

are considered to be high risk and should be labelled with dangerous protection level;

• Removed permissions — claimed to be present only for backward compatibility. Note that this type

does not correlate to the @removed tag, as it appears for permissions of other types.

In practice, however, we found Install permissions with a dangerous protection level and Runtime permissions

with protection levels normal and signature. Such inconsistencies do not necessarily lead to flawed security

enforcement, but create ambiguity for both third-party and Android developers, complicating development.

4.1.7 Status

“Status” is inferred from the Android API comments indicating the universal status of each permission.

Generally, if the status is not specified, a permission is considered available for use by developers. As such,

we identified three categories for this attribute:

• relevant — the permission is current and usable;

20

• backward compatible — the permission is needed for backward compatibility but is not expected to be

used in recent applications, most often is also @deprecated with a relevant alternative;

• removed — unclear case, we were not able to identify why a ‘removed’ permission that is not backward

compatible, was not removed from the source code.

4.1.8 Usage

“Usage” refers to various Android API comments indicating permission usage restrictions. Analyzing the

Android source code comments, we inferred the following groups pertaining to the associated permissions:

• general — open for third-party developers;

• not for use by third-party applications — reserved for OS and OEMs;

• restricted — permissions reserved for specific internal services/processes.

This attribute is the most inconsistent, i.e., many permissions are restricted according to the other attributes

but lack any indication of their usage restrictions with this attribute.

For some permissions, usage restrictions could be inferred from comments of the related permissions. For

example, the permission POWER SAVER does not have usage restrictions, but is described as “superseded by

DEVICE POWER permission”, which in turn is described as “not for use by third-party apps”. Another example

is INTERACT ACROSS USERS FULL, which has no restrictions mentioned, but is described as the “fuller form of

INTERACT ACROSS USERS”, which is also described as “not available to third party applications”. In both cases,

we conservatively infer that the “not for use by third-party apps” restriction applies to the earlier versions

of these permissions as well.

We derived this attribute from comment sections in the source code of Android and used it as a control

variable to detect discrepancies between the classification of permissions found in official documentation, and

the classification of permissions found within the source code.

4.2 Permission transition across Android versions

Our analysis revealed that permissions commonly and often silently transition between different categories

of the non-SDK restriction lists as versions progress. Table 4.1 shows transitions of individual permissions

found in these restriction lists.

There are a substantial number of permissions that remained assigned to the public and sdk categories

across versions. Both categories are claimed to be intended for free use by developers. However, public

permissions are documented, while documentation for sdk permissions is inconsistent. For example, all

permissions listed in the sdk category in the restriction lists also have the tag @SystemApi in the source

21

Table 4.2: Individual permission transitions between restriction list categories

Android 10 Android 11 Android 12 Android 13 # Cases

public → public → public → public 158
sdk → public → public → public 1
sdk → sdk → sdk → public 1
sdk → sdk → sdk → sdk 203
blacklist → sdk → sdk → sdk 2
blacklist → blacklist → sdk → sdk 2
blacklist → blacklist → blacklist → sdk 3
blacklist → blacklist → blacklist → blacklist 15
blacklist → blacklist → none → none 2
blacklist → none → none → none 2
conditional block o → public → public → public 1
conditional block o → sdk → sdk → sdk 5
conditional block o → conditional block o → sdk → sdk 1
conditional block o → conditional block o → conditional block o → sdk 6
conditional block o → conditional block o → conditional block o → conditional block o 123
conditional block o → none → none → none 2
unsupported → blacklist → blacklist → blacklist 1
unsupported → unsupported → conditional block r → conditional block r 3
unsupported → unsupported → unsupported → sdk 1
none → public → public → public 6
none → sdk → sdk → sdk 30
none → blacklist → sdk → sdk 1
none → blacklist → blacklist → sdk 2
none → blacklist → blacklist → blacklist 20
none → blacklist → none → none 1
none → none → public → public 17
none → none → sdk → sdk 58
none → none → blacklist → public 1
none → none → blacklist → sdk 2
none → none → blacklist → blacklist 25
none → none → none → public 21
none → none → none → sdk 41
none → none → none → blacklist 14

code, which implies that they can only be granted to system apps. This intuitively contradicts the available

documentation that associates the sdk category with accessible development tools (as noted in Section 4.1.1).

As Table 4.1 shows, the total number of permissions in public, sdk and blacklist categories increase over

time. While a growing number of officially supported permissions is justifiable by the fast-evolving needs of

the Android platform, a significant increase of blacklisted (inaccessible to developers) permissions (from 26

in Android 10 to 75 in Android 12).

Intuitively, permissions are blacklisted when they are deemed to pose a security risk. However, we

found that the majority of permissions associated with the blacklist category do not exist in the previous

Android versions (Table 4.5). This is an indication that many new permissions are created with no inten-

tion of ever being available for third-party use, and if that were to happen, there might not be sufficient

security safeguards. We leave the investigation of such cases for future research. In a few of the cases,

blacklisted permissions become officially supported (sdk or public categories). For example, the permission

android.permission.MANAGE TEST NETWORKS had been initially introduced as blacklisted in Android 10 and then

was moved to the sdk category in Android 12.

Similarly, permissions WIFI UPDATE USABILITY STATS SCORE and WIFI SET DEVICE MOBILITY STATE were black-

listed in Android 10 and then moved to the sdk category in Android 11. However, the current official Android

22

documentation incorrectly states that these permissions are unsupported in Android 10 [22,23].

The number of conditionally blocked permissions did not decrease significantly over the versions (from 139

(Android 10) to 127 (Android 13)). The overwhelming majority of them were only allowed for APKs targeting

Android 8 or lower, indicating that access will be blocked for versions Android 9 and higher. Interestingly,

some of the permissions in this category transitioned to sdk, i.e., supported permissions, effectively implying

that, although they were supposed to be blocked after Android 8, their presence is needed in higher Android

versions.

Across the four major Android versions incorporating restriction lists, we have identified one permission

present in the AOSP source code, but missing from the restriction lists, we labelled it as missing in Table 4.1.

The permission missing from restriction lists of Android 11 is android.permission.ADD TRUSTED DISPLAY. It was

added to the restriction list in Android 12 as blocked.

The overall analysis of how the assignment of individual permissions to the corresponding categories of

restriction lists has evolved across Android versions is shown in Table 4.2. The value none means that a per-

mission is not present in the restriction list of the corresponding Android version. We identified 173 such per-

missions. As the results show, some categories have been restricted over time (e.g., unsupported→conditionally

blocked) and some were loosened (e.g., blacklist→sdk). These have the potential to open security and privacy

loopholes leading to uncertain protection of app resources (we leave this investigation for future work). For

example, when an app targets a version of Android where the permission is blacklisted but is installed on a

device with an Android version supporting that permission, then the app may consequently grant access to

the resource.

Table 4.3: Combinations of permission attributes

Combination by Restriction, Tag, Protection A10 A11 A12 A13

public + no tag + normal 45 (8.44%) 47 (7.97%) 54 (7.84%) 58 (7.58%)
public + no tag + signature 82 (15.38%) 88 (14.92%) 94 (13.64%) 103 (13.46%)
public + no tag + dangerous 30 (5.63%) 30 (5.08%) 34 (4.93%) 40 (5.23%)
public + no tag + internal - - - 4 (0.52%)
public + unknown + unknown 1 (0.19%) 1 (0.17%) 1 (0.15%) 1 (0.13%)
sdk + hide + signature - - - 1 (0.13%)
sdk + SystemApi + normal 1 (0.19%) 1 (0.17%) 1 (0.15%) 2 (0.26%)
sdk + SystemApi + signature 203 (38.09%) 238 (40.34%) 288 (41.80%) 333 (43.53%)
sdk + SystemApi + dangerous 1 (0.19%) 1 (0.17%) 1 (0.15%) 1 (0.13%)
sdk + SystemApi + internal - - 11 (1.60%) 18 (2.35%)
sdk + SystemApi + system - 1 (0.17%) 1 (0.15%) 1 (0.13%)
sdk + unknown + unknown - - 1 (0.15%) 1 (0.13%)
cond. block (max O) + hide + normal 17 (3.19%) 15 (2.54%) 15 (2.18%) 14 (1.83%)
cond. block (max O) + hide + signature 120 (22.51%) 114 (19.32%) 112 (16.26%) 107 (13.99%)
cond. block (max O) + SystemApi + signature - - 1 (0.15%) 1 (0.13%)
cond. block (max O) + unknown + unknown 2 (0.38%) 2 (0.34%) 2 (0.29%) 2 (0.26%)
cond. block (max R) + hide + signature - - 3 (0.44%) 3 (0.39%)
unsupported + hide + signature 4 (0.75%) 3 (0.51%) - -
unsupported + SystemApi + signature 1 (0.19%) 1 (0.17%) 1 (0.15%) -
blacklist + hide + signature 26 (4.88%) 47 (7.97%) 69 (10.01%) 73 (9.54%)
blacklist + SystemApi + signature - - - 2 (0.26%)
missing + hide + signature - 1 (0.17%) - -

Total 533 590 689 765

23

4.3 Permission-labelling analysis

While permissions are labelled with all of the attributes we derived, only three attributes present actionable

mechanisms: Restriction, Protection, and Tag. Restriction lists and Protection levels are checked against

declared app permissions at the OS level, and Tags are used to generate API documentation. Status, Usage

and Type do not appear to be enforced in practice.

We derived combinations of permissions along three attributes, Restriction, Protection, and Tag,

present in Android 10–13 source code (Table 4.3).

Unrestricted-access permissions. The vast majority of permissions (363–563, or 68–73% of all permis-

sions depending on the version) have the restriction type public or sdk, indicating that are open to third-party

developers. Yet, among them, 4% (22 permissions in Android 13) are intended for internal use only, i.e., re-

served for operating system functionality which directly contradicts their supposed availability for third-party

developers, according to their protection.

We observe a similar discrepancy with 205–355 (38–46%) sdk permissions that have the @SystemApi tag,

which indicates that these permissions are only available to system developers, despite the fact that “SDK”

in Android refers to accessible development resources.

As mentioned in Section 4.1.5, one permission has been assigned a protection level @SystemApi in Android

11. This protection level does not exist in any official documentation.

Limited-access permissions. We observe contradictory labelling for 165–202 (26–31%) permissions in

Android 10–13 that have the restriction type blacklist or conditionally blocked.

133–121 conditionally blocked (max O) permissions are labelled with the @hide tag, implying that while

these are not shown in public APIs, they are also open to third-party apps targeting Android 8 (max O).

This contradicting labelling may be used as a preventative measure to caution third-party developers

against using these permissions beyond the targeted version. This, for example, seems to be the case with

three conditionally blocked (max R) permissions found in Android versions 12 and 13.

Undefined-access permissions 0–5 (0–0.9%) permissions have the restriction type unsupported. They

are signature permissions; 4 of them are flagged with @hide tag and one as @SystemApi.

All of them were relabelled over time:

• one transitioned to blacklist in API 30;

• three — to conditional block Rin API 31;

• one — to sdk in API 33.

Unsupported permissions indicate that developers should not rely on them as they may be altered without

notice, while missing permissions suggest inadequate documentation.

Non-existent permissions. We identified one permission in the source code manifest files that is not

present in the restriction lists (its restriction category is labelled as missing).

24

Vice versa, we found permissions given in the official restriction lists that are not present in any of the

manifest files we parsed (their protection and tag attributes are labelled as unknown). These permissions

are:

• BIND VISUAL VOICEMAIL SERVICE

• CLEAR APP GRANTED URI PERMISSIONS

• MANAGE SCOPED ACCESS DIRECTORY PERMISSIONS

• SEND CATEGORY CAR NOTIFICATIONS

The first three are present in all restriction lists iterations, and the last one only appeared in the sdk

restriction lists starting Android 12 (API 31). There is also no Android documentation mentioning these

permissions. The lack of uniform presence of permissions in publicly available and documented sources poses

a significant risk of them being misused by developers.

4.4 Permission-labelling conflicts

Our analysis revealed that some attribute combinations provide redundant or inconsistent labelling as a

result of official documentation conflicting with the source code. We identified the following thirteen types

of conflicts1:

• (NR) Runtime permissions that have protection level normal as opposed to expected dangerous;

• (SR) Runtime permissions that have protection level signature, while documented to have dangerous;

• (DC) Install permissions that have protection level dangerous, while documented to have protection

level normal or signature;

• (BG) permissions with a restriction blacklist and thus are expected to be properly annotated as not

available for use in third-party apps, yet lacking this annotation;

• (ET) permissions annotated as not available for use in third-party apps, yet not tagged with @hide to

be excluded from the public API documentation;

• (PT) permissions annotated as not available for use in third-party apps and assigned to the public

restriction list;

• (EL) permissions annotated as restricted and not tagged with @hide to be excluded from the public

API documentation;

1The coding of conflicts uses the following scheme: tags (E — no tag, H — @hide, O — @SystemApi); restriction categories
(P — public, B — blacklist); protection levels (N — normal, S — signature, D — dangerous, I — internal); usages (G —
general, T — not for 3rd-party, L — restricted); types (C — Install, R — Runtime).

25

Table 4.4: Discovered permission labelling conflicts

Conflicts
Number of conflicts Total changes

A10 A11 A12 A13 added removed

NR 4 4 5 6 2 0

SR 4 9 10 11 7 0

DC 1 1 5 6 5 0

BG 7 15 30 34 33 6

ET 40 41 42 48 8 0

PT 40 41 42 48 8 0

EL 2 3 3 3 1 0

PL 2 3 3 3 1 0

EI 0 0 0 4 4 0

PI 0 0 0 4 4 0

IG 0 0 4 12 12 0

HG 88 92 105 107 32 13

OG 83 101 123 150 64 0

Total 271 310 372 435 181 19

• (PL) permissions annotated as restricted and assigned to the public restriction list;

• (EI) permissions that have a protection level internal but are not tagged with @hide from the public

API;

• (PI) permissions have protection level internal, but are assigned to the public restriction list;

• (IG) permissions with a protection level internal that are not properly annotated as not available for

use in the third-party apps;

• (HG) permissions excluded from the public API documentation by the tag @hide, yet not properly

annotated as not available for use in third-party apps;

• (OG) permissions excluded from the public API documentation by the tag @SystemApi that are not

annotated as not available for use in third-party apps;

We discovered 1,388 cases of labelling contradictions in total between the official documentation and the

Android platform source code. The summary of these conflicts for each of the analyzed Android versions is

listed in Table 4.4.

As our analysis showed, the vast majority of these contradictions tend to persist across different versions

and are rarely corrected. For example, the number of NR, SR and DC conflicts increased slightly over time,

with all discrepancies present in older versions continuing to subsequent releases.

26

The BG conflicts, i.e., permissions with a blacklist restriction, were partially corrected: two permissions

were moved to the sdk category and one completely removed in Android 12, while one permission was moved

to the public category and two to the sdk category in Android 13.

Yet, among the additions to the BG conflict, almost all were newly introduced, except for two. For

example, the permission TEST MANAGE ROLLBACKS had been unsupported, then was moved to blacklist category

in Android 11, however, this change was not reflected in the code. On the other hand, the permission

ADD TRUSTED DISPLAY is present in the code but is missing from the restriction lists for Android 11.

Similarly, none of the labelling contradictions with ET, PT, IG, OG conflicts were resolved, while some

of the newly added permissions were introduced with contradictory labels.

We noticed a few exceptions to this pattern. For example, OVERRIDE WIFI CONFIG from the sdk restriction

category had been tagged @SystemApi in Android 12. In Android 13, it was moved to the public category,

accompanied by the removal of the @SystemApi tag. Yet, in the source code, its plain-text comment still

contains “not for use by third-party applications”, hence, the appearance of the ET conflict.

Similarly, one permission in PT conflicts was moved from sdk to public restriction category, while its

comment was not updated.

One EL, one PL, four EI, and four PI permissions were all introduced with their respective conflicts,

and none were fixed or removed.

Most of the twelve permissions appearing with the IG conflict were newly introduced permissions, except

for two cases (in Android 12 and 13) that both previously had protection signature, which was then changed

to internal, while other restrictions stayed the same (tag @SystemApi, restriction sdk).

HG conflict permissions were altered on several occasions: eight were changed to OG conflict, three

were removed in the next major version, and one had its tag removed (which appears to be a fix). All 32

permissions across Android versions 11–13 were introduced with the conflict.

OG conflict had no permissions fixed or removed. Out of 67 permissions appearing with this conflict

across Android versions 11–13, 57 were first-time introduced, while 10 already existed: eight were changed

from the HG conflict, and two had their not for third-party usage comment removed.

The majority of these discrepancies pertain to non-actionable attributes that contradict actionable at-

tributes and can be largely attributed to poor or outdated code documentation. However, one particular

conflict, PI, involves two conflicting actionable attributes — the internal protection level and public re-

striction. This conflict was observed in the latest Android version 13, indicating that Android development

practices still lack internal mechanisms for ensuring consistency in categorization.

In all four versions, the number of inconsistencies either increased or, in rare cases, remained the same.

We have not observed any instances where the number of conflicting permissions decreased.

From Android 9 (API 28), Android started introducing restrictions to non-SDK interfaces, gradually

removing the non-SDK APIs from the official documentation. Google further stated that only the SDK API

packages listed in the official documentation [18] are open to third-party developers [17]. In this work, we

27

Table 4.5: Transition of blacklist permissions across versions

Blacklist changes A10 A11 A12 A13

Newly added 26 24 28 14
Removed - 2 3 0
Moved - 3 3 8

blacklist → sdk - 2 3 7
blacklist → public - 0 0 1
unsupported → blacklist - 1 0 0

Total 26 47 69 75

Table 4.6: Restriction categories of elements present in source code

Restriction Category
A10(Q) A11(R) A12(S) A13(T)

present in
restriction list

found in
source code

present in
restriction list

found in
source code

present in
restriction list

found in
source code

present in
restriction list

found in
source code

Total methods 389,084 1131 428,360 1721 495,713 2304 537,427 2147

public 94186 246 (.3%) 100448 332 (.3%) 108774 494 (.5%) 116717 362 (.3%)

sdk 9013 557 (6.2%) 11609 854 (7.4%) 14596 968 (6.6%) 17023 1099 (6.5%)

blacklist 152936 117 (.1%) 189612 284 (.1%) 248898 470 (.2%) 282514 515 (.2%)

cond. block 106493 96 (.1%) 102422 134 (.1%) 102298 264 (.3%) 100169 103 (.1%)

max O (A8) 105695 88 (.1%) 100824 123 (.1%) 97607 220 (.2%) 95543 82 (.1%)

max P (A9) 798 8 (1.0%) 776 10 (1.3%) 762 6 (.8%) 756 6 (.8%)

max Q (A10) 0 - 822 1 (.1%) 823 0 (.0%) 823 4 (.5%)

max R (A11) 0 - 0 - 3106 38 (1.2%) 3043 11 (.4%)

max S (A12) 0 - 0 - 0 - 4 (.0%)

unsupported 26456 115 (.4%) 24269 117 (.5%) 21147 108 (.5%) 21004 68 (.3%)

Absent methods - 7 - 15 - 34 - 49

Total 389,084 1138 428,360 1736 495,713 2338 537,427 2196

explore permissions use in both non-SDK and SDK interfaces, accessible for system and third-party apps.

4.5 Element-Permission inconsistencies

Across Android versions 10–13, we derived 3,615 unique elements (e.g., methods, variables) protected by

permissions. Among them, 70 methods were absent from the restriction lists and not found in the official

documentation. It appeared that some of these elements were tied to the bug reports and internal testing,

while most of the remaining were located under /services/core/java/com/android/server path in the source

code and included services such as BluetoothManagerService, ContentService, NotificationManagerService,

etc.

It is interesting to note that the number of these absent methods increased over time. The nature of this

mishap is not clear, since the restriction lists are generated for AOSP, which, among other things, is meant

to indicate functionality limited for third-party developers.

Among the elements protected by permissions, 32 methods appeared to transition from the unsupported

to the blocked restriction category. Out of them, only one, enableVerboseLogging(I) had an alternative call,

setVerboseLoggingEnabled(Z), suggested on the restriction lists update page for Android 11.

Similar to permissions, the elements in restriction lists are categorized into the following categories:

28

blacklist, conditionally blocked, unsupported, sdk and public. The summary of the elements for each category

are given in Table 4.6.

To analyze relationships between calls and permissions, we compared restriction categories of permissions

and the elements they are guarding. Intuitively, we expected the level of restrictions placed on elements and

the corresponding permissions to be equivalent, i.e., elements considered to be high-risk should be guarded

by the corresponding permissions with a high level of risk. We discovered numerous inconsistencies that are

summarized in Table 4.7.

As our review shows, the most consistent are the public and sdk elements: more than 50% match the

restrictions of their permissions. Interestingly, among the discovered inconsistencies, we observed two public

elements protected by a single blacklisted permission that existed since Android 11, (the number of sim-

ilar elements changed to five in Android 12 and four in Android 13, and four different permissions were

identified as their requirements). For example, an method in the BiometricManager called “canAuthen-

ticate” was protected by a public permission USE BIOMETRIC, which was changed to a new blacklist per-

mission USE BIOMETRIC INTERNAL, while element restriction remained public in Android 10–13. One factor

that could explain this behaviour is the optional conditional parameter, an optional boolean value for

@RequiresPermission. It is set to true if an element may not require permissions under some circum-

stances, such as certain call parameters, certain platforms, etc. [34]. However, this is not the case for

“canAuthenticate”. There is seemingly no reason for the element to stay public, as it cannot be accessed

inside the public SDK.

The majority of blacklisted elements can be accessed with public or sdk permissions. Although these

elements are not available to the public, it is interesting to see that no additional safeguards are placed by

Android developers.

The permissions that safeguard the conditionally blocked elements are predominantly restricted as public

and sdk. Since these elements are primarily maintained for backward compatibility purposes, the existence

of unrestricted permissions is not a cause for concern.

We discovered, however, a clear contradiction in one of the elements available Android 12 and 13 and

restricted as conditional block R. It is safeguarded with one permission restricted as conditional block O. In

other words, this method is blocked for applications that target Android 12 or higher and is protected by a

permission that is blocked on devices with Android 9 and higher. Consequently, if an application is targeting

Android 9, 10, or 11, the permission is blocked and consequently, the method is not accessible.

As for the unsupported elements, there are no guidelines to be applied due to their unrestricted nature.

Our analysis confirms that their numbers are decreasing as Android promised [36], although the rate of

decrease is slow (with 26,000 elements in Android 10 and 21,000 elements in Android 13).

Among other problems, we discovered 32 elements requiring permissions absent from our collected unified

permission mapping :

• MANAGE ROLES FROM CONTROLLER,

29

• PERMISSION MAINLINE NETWORK STACK,

• MANAGE SIM ACCOUNTS and

• ACCESS LAST KNOWN CELL ID.

These permissions were not defined for any of the considered Android versions. Furthermore, we could

not find any information about them, neither in the official documentation nor in any other open sources.

These permissions are labelled as unknown in Table 4.7. They correspond to 22 cases of elements with a

blacklist restriction, two cases of elements with a conditional block O restriction, one case of an element with

a conditional block P restriction, 23 cases of elements with an sdk restriction, and one case of an element

with an unsupported restriction across Android versions 10–13.

Initially, permissions were established to control access to Android functionality, while later, restriction

lists were introduced as a backup measure to prevent access to specific elements through reflection or JNI,

even if the necessary permission was granted. However, the absence of a coherent link between these two

systems has resulted in significant challenges in their maintenance. Changes are made to these two systems

independently. As our analysis shows, it becomes increasingly difficult for Android developers to ensure their

consistency, for vendors to comply with them, and nearly impossible for third-party developers to follow them

correctly and conscientiously.

30

Table 4.7: Overview of discrepancies between element and permission restrictions.

Call
Restriction

Permission
Requirement∗

Permission
Restriction

A10 (P) A11 (Q) A12 (R) A13 (S)

blacklist

one

unknown - - 2 2
cond. block O 16 10 29 35
cond. block R - - 1 1
public 16 53 86 66
sdk 40 122 165 207
unsupported - 1 2 -

all

unknown, public - - - 1
public, sdk - - 3 3
public 3 1 18 4
sdk - - - 3

any

unknown, sdk - 3 5 9
blacklist, sdk - 1 - -
public, sdk - - - 2
public - - 2 2
sdk - 10 17 30

Total calls: 75 (64%) 201 (71%) 330 (70%) 365 (71%)

conditional block O

one

unknown 1 1 - -
blacklist 1 1 2 2
public 27 45 127 14
sdk 12 39 32 32

all
public, sdk 1 1 1 1
public 1 1 32 2
sdk 4 4 4 4

any
cond. block O, sdk - - - -
public 4 5 3 4
sdk 2 8 5 8

Total calls: 53 (60%) 105 (85%) 206 (94%) 67 (82%)

conditional block P

one
public 7 7 4 3
sdk 1 1 1 1

any
unknown, sdk - 1 - -
public - 1 1 2

Total calls: 8 (100%) 10 (100%) 6 (100%) 6 (100%)

conditional block Q
one sdk - 1 - -
any public - - - 4

Total calls: - 1 (100%) 0 4 (100%)

conditional block R

one
cond. block O - - 1 1
public - - 26 2
sdk - - 4 4

all
public, sdk - - - -
public - - 4 -

any sdk - - 2 2
Total calls: - - 37 (97%) 9 (82%)

public

one
blacklist - 2 4 3
cond. block O 1 - - -
sdk 23 44 50 61

all sdk 3 3 3 3

any
cond. block O 1 - - -
public, sdk - 12 15 21
sdk 3 7 6 5

Total calls: 31 (13%) 68 (21%) 78 (16%) 106 (29%)

sdk

one

unknown 5 6 2 2
blacklist 7 11 10 49
cond. block O 17 19 19 19
public 150 215 224 217
unsupported 1 1 1 -

all
blacklist, public - 1 1 1
blacklist - 2 2 2
public 23 26 48 10

any

unknown, cond. block O 1 - - -
unknown, sdk - 5 2 -
blacklist - - 1 1
cond. block O, sdk 13 - 1 -
cond. block O 4 - - -
public, sdk 3 6 13 15
public 4 23 26 9

Total calls: 228 (41%) 315 (37%) 350 (36%) 325 (30%)

unsupported

one

blacklist 6 1 2 2
cond. block O 8 4 3 3
public 44 55 49 17
sdk 49 37 29 25

all
public 2 2 6 2
sdk - - - 1

any

unknown, sdk - 1 - -
blacklist, public, sdk 1 1 1 -
public, sdk 1 2 2 3
public 1 2 2 2
sdk - 7 9 9

Total calls: 112 (97%) 112 (96%) 103 (95%) 64 (94%)

* - ‘one’ indicates there is only one required permission, ‘all’ indicates several permissions are required,
‘any’ indicates that any of the listed permissions are sufficient to invoke a method.

31

5 Results of practical analysis

This chapter contains the practical results of this thesis. It presents the dataset of the applications

collected and explains the process for and the results of the automated analysis of permissions in Android

applications that leverages our theoretical findings.

5.1 Experimental analysis with PChecker

To further understand permission misuse in practice, we performed an analysis of third-party Android appli-

cations using our derived mappings as a basis for classification by the PChecker tool.

In addition to the identified theoretical permission labelling conflicts, we discovered several scenarios in

practice when (1) apps are requesting permissions that should not be accessible to third-party apps, and (2)

apps are granted permissions that are not expected to be granted to third-party apps.

PChecker identified the following permission violations in practice:

• (AH) permissions tagged @hide should not be available to third-party apps, and consequently should

not be requested by third-party developers;

• (AO) permissions tagged @SystemApi should not be available to third-party apps;

• (N3) permissions marked as not for third-party apps should not be granted to third-party apps;

• (RE) permissions marked as restricted should not be granted to third-party apps;

• (CB) permissions restricted as Conditionally blocked should not be granted to apps that target an

Android version over the set limit, e.g., max-O permissions should be blocked for apps installed on

devices with Android version over 8 (O);

• (BL) permissions restricted as blacklisted should not be granted to apps;

• (SY) permissions tagged @SystemApi should not be granted to third-party apps.

These issues should be viewed separately from the permission labelling conflicts, which represent contra-

dictory combinations of attributes. Here, a particular attribute property of a permission contradicts the way

the permission is handled on Android devices.

32

5.2 Benchmark app analysis

Table 5.1: Permissions granted to the testing app (benchmark analysis)

Restriction Tag Type Status Protection Usage
Issues,

Conflicts
Permissions on
Android 12

Granted
on devices

10 11 12 13

public no tag Install relevant normal general - 44 36 38 44 44

public no tag Install backw. comp normal general - 4 3 3 4 4

public no tag Runtime relevant normal general NR 5 5 5 5 5

public no tag Runtime backw. comp normal general NR 1 1 1 1 1

sdk SystemApi Install relevant normal not for 3rd-p. N3,SY 1 1 1 1 1

cond. block (O) hide Install relevant normal general CB 0 2 0 0 0

cond. block (O) hide Removed backw. comp normal general CB 15 15 15 15 15

blacklist hide Install relevant signature general BL 30 0 0 0 0

Note: Accented as bold are rows where an issue occurred for our testing app, the rest were handled according to documentation

To establish a baseline for our analysis, we developed a testing app containing all permissions derived for

Android versions 10–13. None of the permissions were required for the app’s functionality. We then used

PChecker to analyze this testing app. The results of this analysis are presented in Table 5.1.

Out of 689 requested permissions, our testing app was granted 63–71 permissions. Among them, only

43–55 were open to third-party developers (public and sdk categories).

All existing permissions with the NR conflict were granted at installation according to their normal

protection level. Even though they are granted automatically, their placement under the Runtime section in

the source code determines their runtime evaluation, mishandling them could lead to protection blind spots.

The largest number of discovered conflicts (17) is related to a restriction attribute Conditionally blocked

(O) (CB issue). Despite being expected to be blocked for apps targeting Android 9 and higher, these

permissions were automatically granted during installation. While we intentionally left the target version of

our app unspecified, all devices assumed it to have the targetSdkVersion of 32. This reinforces the fact

that the Android platform (or the corresponding OEM implementation) does not respect restriction rules for

outdated permissions.

Another conflicting case that PChecker has discovered is one blacklisted permission (BL issue) that was

granted on Android 13. The READ NEARBY STREAMING POLICY permission was blacklisted for API levels 31 and

32. This permission was moved to the public restriction list for API level 33. However, despite being identified

as having targetSdkVersion 32 (Android 12) on all four devices, this permission was granted to our app in

direct contradiction with the official documentation.

Among similar cases is the READ INSTALL SESSIONS permission that was granted to our testing app on

installation in all four cases. The permission is labelled as “not a third-party API (intended for system

apps)” and is a part of @SystemApi tag category (N3, SY issue). The permission grants the app visibility

into details of installed on the device apps. If automatically granted, a malicious app may gain sensitive

33

Table 5.2: The summary of Android apps

Source # APKs Installable Runnable
Apps’ target API level

29 30 31 32

androgalaxy (2019) 257 190 175 (68.09%) 175 0 0 0

androidapkfree.com (2020) 319 200 169 (52.98%) 160 9 0 0

apkgod (2020) 471 393 356 (75.58%) 356 0 0 0

APKMAZA (2020) 34 25 23 (67.65%) 23 0 0 0

APKPure (2021) 317 180 165 (52.05%) 155 10 0 0

appsapk.com (2020) 161 132 122 (75.78%) 122 0 0 0

CracksHash (2022) 1068 913 705 (66.01%) 38 470 179 18

CracksHash (2021) 2015 1476 969 (48.09%) 391 520 57 1

F-droid (2020) 1202 1186 997 (82.95%) 943 54 0 0

Total 5844 4695 3681 (62.99%) 2363 1063 236 19

information, e.g., concerning mobile health app installed on a device. For example, the presence of a diabetes

app on a phone implies that a user likely has diabetes [77].

5.3 Automated analysis

We leverage PChecker to explore the usage of permissions in Android apps collected in the wild.

For this analysis, we collected 35,453 APKs from two Android markets: F-droid, APKPure.com; and

six websites distributing Android applications: androidapkfree.com, appsapk.com, androgalaxy (no longer

exists), CracksHash, apkgod, APKMAZA. We excluded from our analysis duplicate apps, invalid APKs that

could not be decompressed, APKs without an AndroidManifest.xml file, APKs that had no API level present

in the manifest file or had an invalid API level (more than 33), contained less than two files and contained

less than two permissions in the manifest file. We also removed APKs whose signature was not verified

successfully by apksigner [27], a signature verification tool. This left us with 17,398 APKs.

Among these, we selected APKs that had a targetSdkVersion ≥ 29 (Android 10), assuming they were

developed in line with recent practices and limitations set by Google.This resulted in a subset containing

5,844 applications. Out of 5,844, only 3,681 applications were successfully installed on all four test devices.

The summary of these applications is shown in Table 5.2.

We then analyzed these 3,681 apps using PChecker. The results of this assessment are given in Table 5.3.

34

Table 5.3: Results of the automated analysis of Android apps

Restriction Tag Type Status Protection Usage
Android 10 Android 11 Android 12 Android 13

requested granted requested granted requested granted requested granted

public no tag Install relevant normal general 21865 21643 (99.0%) 21865 21836 (99.9%) 21854 21853 (100.0%) 21854 21853 (100.0%)

public no tag Runtime relevant normal general 251 248 (98.8%) 251 248 (98.8%) 251 250 (99.6%) 251 250 (99.6%)

public no tag Install backw. comp normal general 934 934 (100.0%) 934 934 (100.0%) 934 934 (100.0%) 934 934 (100.0%)

public no tag Runtime backw. comp normal general 332 332 (100.0%) 332 332 (100.0%) 332 332 (100.0%) 332 332 (100.0%)

public no tag Install relevant signature general 1886 0 (.0%) 1886 6 (.3%) 1886 6 (.3%) 1886 0 (.0%)

public no tag Install relevant signature not for 3rd-p. 298 0 (.0%) 298 10 (3.4%) 298 10 (3.4%) 298 0 (.0%)

public no tag Install relevant signature restricted 42 0 (.0%) 42 0 (.0%) 42 0 (.0%) 42 0 (.0%)

public no tag Runtime relevant signature restricted 74 0 (.0%) 74 0 (.0%) 74 0 (.0%) 74 0 (.0%)

public no tag Install backw. comp signature general 2 0 (.0%) 2 0 (.0%) 2 0 (.0%) 2 0 (.0%)

public no tag Install relevant dangerous general 402 0 (.0%) 402 0 (.0%) 402 0 (.0%) 402 0 (.0%)

public no tag Runtime relevant dangerous general 10364 0 (.0%) 10249 0 (.0%) 10238 0 (.0%) 10237 0 (.0%)

public no tag Runtime backw. comp dangerous general 25 0 (.0%) 25 0 (.0%) 25 0 (.0%) 25 0 (.0%)

cond. block (max O) hide Install relevant normal general 8 8 (100.0%) 8 0 (.0%) 8 0 (.0%) 8 0 (.0%)

cond. block (max O) hide Removed backw. comp normal general 895 895 (100.0%) 895 895 (100.0%) 895 895 (100.0%) 895 895 (100.0%)

cond. block (max O) hide Install relevant signature general 5 0 (.0%) 5 2 (40.0%) 5 2 (40.0%) 5 0 (.0%)

cond. block (max O) hide Install relevant signature not for 3rd-p. 2 0 (.0%) 2 2 (100.0%) 2 2 (100.0%) 2 0 (.0%)

cond. block (max O) hide Install relevant signature restricted 3 0 (.0%) 3 0 (.0%) 3 0 (.0%) 3 0 (.0%)

unsupported hide Install Removed signature not for 3rd-p. 3 0 (.0%) 3 0 (.0%) 3 0 (.0%) 3 0 (.0%)

blacklist hide Install relevant signature general 2 0 (.0%) 2 2 (100.0%) 2 2 (100.0%) 2 0 (.0%)

sdk SystemApi Install relevant normal not for 3rd-p. 4 4 (100.0%) 4 4 (100.0%) 4 4 (100.0%) 4 4 (100.0%)

sdk SystemApi Install relevant signature general 71 0 (.0%) 69 10 (14.5%) 69 10 (14.5%) 69 0 (.0%)

sdk SystemApi Install relevant signature not for 3rd-p. 97 0 (.0%) 97 14 (14.4%) 97 14 (14.4%) 97 0 (.0%)

sdk SystemApi Install relevant signature restricted 2 0 (.0%) 2 1 (50.0%) 2 1 (50.0%) 2 0 (.0%)

sdk SystemApi Install backw. comp signature general 8 0 (.0%) 7 0 (.0%) 7 0 (.0%) 7 0 (.0%)

sdk SystemApi Install backw. comp signature not for 3rd-p. 3 0 (.0%) 3 0 (.0%) 3 0 (.0%) 3 0 (.0%)

sdk SystemApi Runtime relevant dangerous general 1 0 (.0%) 1 0 (.0%) 1 0 (.0%) 1 0 (.0%)

Total 37579 24064 (64.0%) 37461 24296 (64.9%) 37439 24315 (64.9%) 37438 24268 (64.8%)

Note: Accented as bold are rows where an issue occurred for any app on any of the devices, the rest were handled according to documentation

5.3.1 Requested permissions

We expected the number of the requested by our apps permissions to be similar across devices. We observed

noticeable differences between permissions requested in manifest files and permissions detected as requested

by the Android OS.

Conditionally blocked permissions. 913 (2.4%) requested permissions in our apps are conditionally

blocked O. Since all selected apps in our set target Android 29 or higher, all these permissions were expected

to be blocked. Yet, developers chose to use them.

Not for third-party developers. 2.4% of all requested permissions are tagged with @hide. These

permissions are not part of the public API, but were requested by apps nonetheless. Furthermore, these

permissions are either conditionally blocked or blacklisted/unsupported, emphasizing their restricted nature.

Similarly, the permissions with the @SystemApi tag are not expected to be available to the third-party

developers, yet 183–186 (less than 1%) are requested. Some of these requested permissions (2–16%) were

granted, which directly contradicts the official documentation.

Our research shows a common trend of third-party developers routinely requesting permissions that should

not be available to apps. While the amount of these cases is gradually reducing, i.e., fewer are being granted

on Android 13 than on Android 11, it is still significantly large in the latest versions of Android.

Blacklisted permissions. We found a small percentage of cases where apps targeting API 29 requested

a blacklisted permission. These cases concern one unique permission START ACTIVITIES FROM BACKGROUND, which

was at first (Android 10,11) assigned to restriction lists from the blacklist category, but then moved to the

35

Table 5.4: Permission violations in practice

Issue code # APKs
Instances

A10 A11 A12 A13 Total

“Requested” issues

AH 464 903 901 901 895 3600

AO 117 4 29 29 4 66

Total 538 907 930 930 899 3666

“Granted” issues

CB 462 903 899 899 895 3596

BL 2 4 30 30 4 68

N3 6 0 2 2 0 4

RE 1 0 1 1 0 2

SY 6 4 29 29 4 66

Total 462 911 961 961 903 3736

sdk restriction lists. This permission was granted on Android versions 11 and 12, where the former perceives

the permission as blacklisted, while the latter perceives the permission as sdk. Nevertheless, according to the

app’s targetSdkVersion, this permission should have been blocked.

Contradictory documentation. We observe in our analysis that permissions are requested and granted

often regardless of their annotations and context.

For example, 895 permissions that were requested by apps are in the Removed AndroidManifest section

which lists permissions removed from the current API. Yet, these permissions were requested and all of them

were granted to the analyzed apps. Similarly, there are three cases of permissions, accompanied by the

@removed tag in the source code, requested by applications, and none of them were granted. The backward

compatibility status also seems to be largely ignored, as 98% of such requested permissions were granted to

relatively up-to-date apps.

According to usages, 407 (1%) requested permissions are specifically labelled as not for third-party appli-

cations, yet 4–30 (1–7%) of them were granted. Moreover, 121 (0.3%) restricted permissions were requested

by apps. One was granted in Android 11 and 12.

This indicates that the permission annotations, and therefore, indicated restrictions are ignored by devel-

opers and are not followed.

5.3.2 Granted permissions

Our findings show that the apps installed on devices were granted between 24,064 and 24,315 permissions in

total, representing 64–65% of the requested permissions.

36

Our analysis revealed several security violations where unexpected permissions were requested by and/or

granted to 538 apps in total on installation. The summary of the issues is shown in Table 5.4, more details

on granted permissions with the corresponding conflicts are provided in Table 5.5.

CB issue. We found 3,596 instances of issues in 462 analyzed apps, i.e., 98% of the requested CB per-

missions were granted on Android 10–13. This directly contradicts Android documentation and the Android-

defined treatment of conditionally blocked permissions, i.e., handling these permissions is expected to be

equivalent to the blacklist category for all analyzed apps. For example, android.permission.USE CREDENTIALS

permission, theoretically allowed for use in apps that target Android version 8 (API 27) or lower, was granted

to 273 apps targeting Android 10 and above. This permission allows an app to request authentication tokens,

which may lead to the exploitation of authenticated OS resources without user notification.

BL issue. Another issue concerns two apps that were granted the START ACTIVITIES FROM BACKGROUND

permission blacklisted in API 29. The apps were targeting Android 10 and 11 and thus were expected neither

to request this permission nor have it granted.

In Android 13, this permission was moved to tthe sdk category with a signature|privileged|

vendorPrivileged|oem|verifier, + |role protection level which indicates a vendor-only permission. Yet,

it was granted to two third-party apps on Android 11 and 12.

N3 issue. Among the analyzed applications, we also discovered 68 issues, where permissions, recognized

by Android developers as “not for third-party use”, were granted to six third-party applications. For example,

INSTALL PACKAGES, a not for third-party permission that can be used to install other packages, was granted to

two apps targeting API 29.

SY issue. This ties into cases where permissions marked as @SystemApi and, therefore, expected to be

absent from public APIs, were requested and granted to 6 third-party apps on 66 occasions, contradicting

Android documentation. For example, GRANT RUNTIME PERMISSIONS was granted to one app on devices with

Android 11 and 12. It belongs to the sdk restriction category and is recognized as system-only according to

the @SystemApi tag. The plain-text comment describes its functionality as “Allows an application to grant

specific permissions”, which heavily implies that third-party applications are not intended to use it.

All the above-mentioned permissions were requested by applications in their Manifest files, and all were

automatically granted by the system without any user consent.

Non-existent permissions. In our analysis of the system’s Android Manifest files (Section 4.3) we

encountered 4 permissions listed in the official restriction lists, but not present in any of the four versions of

Android code (10–13). In the analyzed apps, we did not encounter the use of any of these permissions:

• BIND VISUAL VOICEMAIL SERVICE,

• CLEAR APP GRANTED URI PERMISSIONS,

• MANAGE SCOPED ACCESS DIRECTORY PERMISSIONS and

• SEND CATEGORY CAR NOTIFICATIONS.

37

Table 5.5: Granted to APKs permissions with conflicting combinations

Permission
Security
Issues

Granted on devices APKs
combined

APKs Target API Level

A10 A11 A12 A13 29 30 31 32

android.permission.ACCESS WIMAX STATE CB 4 - - - 4 4 - - -

android.permission.AUTHENTICATE ACCOUNTS CB 176 176 176 176 176 98 74 4 -

android.permission.BACKUP SY,N3 - 2 2 - 2 2 - - -

android.permission.CHANGE COMPONENT ENABLED STATE N3 - 2 2 - 2 2 - - -

android.permission.CHANGE WIMAX STATE CB 4 - - - 4 4 - - -

android.permission.CONNECTIVITY INTERNAL SY,N3 - 2 2 - 2 2 - - -

android.permission.FLASHLIGHT CB 113 113 113 113 113 48 61 4 -

android.permission.GRANT RUNTIME PERMISSIONS SY - 1 1 - 1 1 - - -

android.permission.INSTALL PACKAGES N3 - 2 2 - 2 2 - - -

android.permission.INTERACT ACROSS USERS SY,N3 - 2 2 - 2 2 - - -

android.permission.LOCAL MAC ADDRESS SY - 2 2 - 2 2 - - -

android.permission.MANAGE ACCOUNTS CB 172 172 172 172 172 98 67 7 -

android.permission.MANAGE APP OPS MODES CB,N3 - 2 2 - 2 2 - - -

android.permission.MANAGE NETWORK POLICY CB - 2 2 - 2 2 - - -

android.permission.MANAGE USB SY - 2 2 - 2 2 - - -

android.permission.OVERRIDE WIFI CONFIG SY,N3 - 2 2 - 2 2 - - -

android.permission.PEERS MAC ADDRESS SY - 2 2 - 2 2 - - -

android.permission.READ INSTALL SESSIONS SY,N3 4 4 4 4 4 4 - - -

android.permission.READ LOGS N3 - 2 2 - 2 2 - - -

android.permission.READ PROFILE CB 52 52 52 52 52 30 22 - -

android.permission.READ SOCIAL STREAM CB 4 4 4 4 4 4 - - -

android.permission.READ USER DICTIONARY CB 8 8 8 8 8 6 2 - -

android.permission.REBOOT N3 - 2 2 - 2 2 - - -

android.permission.REVOKE RUNTIME PERMISSIONS SY - 1 1 - 1 1 - - -

android.permission.START ACTIVITIES FROM BACKGROUND BL - 2 2 - 2 2 - - -

android.permission.SUBSCRIBED FEEDS READ CB 6 6 6 6 6 6 - - -

android.permission.SUBSCRIBED FEEDS WRITE CB 6 6 6 6 6 6 - - -

android.permission.SUBSTITUTE NOTIFICATION APP NAME SY,N3 - 2 2 - 2 2 - - -

android.permission.TETHER PRIVILEGED SY,N3 - 2 2 - 2 2 - - -

android.permission.UPDATE APP OPS STATS SY,N3 - 2 2 - 2 2 - - -

android.permission.USE CREDENTIALS CB 273 273 273 273 273 150 106 17 -

android.permission.WRITE MEDIA STORAGE SY - 2 2 - 2 2 - - -

android.permission.WRITE PROFILE CB 7 7 7 7 7 6 1 - -

android.permission.WRITE SECURE SETTINGS N3 - 2 2 - 2 2 - - -

android.permission.WRITE SMS CB 25 25 25 25 25 13 11 1 -

android.permission.WRITE SOCIAL STREAM CB 4 4 4 4 4 4 - - -

android.permission.WRITE USER DICTIONARY CB 15 15 15 15 15 8 7 - -

com.android.browser.permission.READ HISTORY BOOKMARKS CB 22 22 22 22 22 15 7 - -

com.android.browser.permission.WRITE HISTORY BOOKMARKS CB 12 12 12 12 12 7 5 - -

Total 907 939 939 899 947 551 363 33 0

38

Table 5.6: Undefined permissions in APKs

App’s
target API level

#
APKs

Requested
in

manifest

Present in
unified mapping

Interpreted by devices

A10 A11 A12 A13

requested granted requested granted requested granted requested granted

29 2363 21724

Total 21288 13374 21279 13426 22140 13427 29126 13378

Defined 21260 13374 21251 13413 21251 13413 21251 13366

Undefined 28 0 28 13 889 14 7875 12

- present in manifest 28 0 28 13 28 14 28 12

- not present in manifest 0 0 0 0 861 0 7847 0

30 1063 13643

Total 13530 8800 13443 8955 14002 8964 17457 8964

Defined 13513 8800 13426 8955 13421 8953 13420 8953

Undefined 17 0 17 0 581 11 4037 11

- present in manifest 17 0 17 0 17 11 17 11

- not present in manifest 0 0 0 0 564 0 4020 0

31 236 2657

Total 2598 1762 2576 1794 2559 1811 3191 1811

Defined 2598 1762 2576 1794 2559 1811 2559 1811

Undefined 0 0 0 0 0 0 632 0

- present in manifest 0 0 0 0 0 0 0 0

- not present in manifest 0 0 0 0 0 0 632 0

32 19 213

Total 208 128 208 134 208 138 236 138

Defined 208 128 208 134 208 138 208 138

Undefined 0 0 0 0 0 0 28 0

- present in manifest 0 0 0 0 0 0 0 0

- not present in manifest 0 0 0 0 0 0 28 0

5.3.3 Undefined permissions

In our analysis, PChecker encountered applications that requested permissions absent from the unified per-

mission mapping for the API level corresponding to the app’s targetSdkVersion. In other words, third-party

developers requested permissions that did not exist for the version of the Android API the app was designed

for. The summary of these cases is shown in Table 5.6.

Among the apps targeting Android 10, 22 apps requested 28 permissions that were not available for API

29. For example, 16 of these apps requested MANAGE EXTERNAL STORAGE permission only added to SDK in API

30 (Android 11) [19]. 11 apps requested QUERY ALL PACKAGES added in API 30 [20], and one app requested

SCHEDULE EXACT ALARM introduced two years later in API 31 [21]. Although none of them were granted on

Android 10, this exemplifies the fact that third-party developers are oblivious to Android documentation

requirements.

Also, 15 applications targeting API 30 requested 17 absent permissions, namely SCHEDULE EXACT ALARM,

BLUETOOTH SCAN, and BLUETOOTH CONNECT. The latter two were introduced in API 31 [29]. 13 of these absent

permissions were granted to the apps.

The largest number of permissions appear to be requested on Android 12 and 13 devices. Among these

cases though, we identified several instances where the permissions are not present in the apps’ Android

Manifest files, but added automatically by the OS. For example, BLUETOOTH SCAN, BLUETOOTH CONNECT and

BLUETOOTH ADVERTISE were reported as “requested” by 407 apps targeting API 29 and 30 comprising 861 and

570 instances, accordingly. These permissions were introduced in API 31 [29].

39

Similarly, on the Android 13 device, all 3,681 applications (targeting API 29, 30, 31/32) “requested”

POST NOTIFICATIONS permission introduced in API 33. This permission appears to limit all app notifications

on Android 13, so it is automatically “requested” by the system on behalf of apps [43].

Permissions READ MEDIA AUDIO, READ MEDIA VIDEO and READ MEDIA IMAGES were “requested” by 2,471 out of

3,681 applications. These are finer-grained media permissions that were introduced in API 33 to replace

READ EXTERNAL STORAGE [41]. While not all of these permissions may be needed, it appears that Android

implicitly requests all three permissions on Android 13.

We observe similar behaviour with regards to the BODY SENSORS BACKGROUND permission, which was added

automatically to 8 apps requesting BODY SENSORS. This OS behaviour appears to be compatibility-related, as

in Android 13, the former permission was introduced for more controlled access [41].

Although the amount of undefined permissions granted is small (less than 1%), these cases show that the

OS version of the device plays a major role in the way apps’ permissions are treated, introducing even more

uncertainty for third-party developers.

40

6 Conclusion and discussion

We now summarize the findings and results of this work, enumerate discovered problematic patterns and

outline potential vectors for future research.

6.1 Summary

6.1.1 Summary of contributions

In this thesis, we analyzed permissions, an essential component of the Android access control system. Our

analysis sheds light on how various types of permissions are handled in real-world Android implementations.

We created a unified permission mapping and categorized permissions based on both actionable and non-

actionable attributes that are often overlooked in official Android documentation.

We show that the categorization provided by Android documentation has been kept incomplete, outdated,

and, on many occasions, inconsistent with the treatment of individual permissions in the source code and in

OS instances for an extended period of time and across multiple API versions.

We further developed PChecker to evaluate discrepancies among permissions requested and granted to

applications. Our analysis of 3,681 Android apps showed the presence of over 14,000 issues.

The severity of the discovered issues ranges from requesting restricted system permissions to having

blacklisted permissions granted to third-party applications.

6.1.2 Discussion

Clear and precise documentation is crucial for providing guidance to developers. However, when documen-

tation is inconsistent and contradictory, it can create confusion leading to security and privacy risks. Our

analysis highlights the prevalence of non-compliance issues in Android applications, underscoring the impact

of inconsistent documentation.

Specifically, our findings emphasize several important issues:

Documentation in theory:

• Inadequate documentation. Our analysis shows that the existing and available to developers of-

ficial documentation is incomplete. Among different issues, we observed permissions and protection

levels that are missing from the documentation but present in the code. Similarly, we observed that

permission classification described by Android documentation is limited and mostly not conveyed to

41

third-party developers. For example, examining officially published restrictions lists, we noted several

undocumented categories that characterize the use of permissions.

• Conflicting documentation. We discovered numerous cases of contradictory labelling of permissions,

i.e., restrictions applied to permissions are contradictory to other annotations associated with these

permissions and the corresponding comments provided by Android developers. For example, public

permissions open to third-party developers are combined with the presence of internal protection

level and the @SystemApi labelling.

Conflicts in permission categorization hinder their proper use by OEMs, Android developers and third-

party developers. As our analysis showed, the vast majority of labelling contradictions tend to persist

across different versions and are rarely corrected.

Documentation in practice:

• Disjointed security enforcement. Access to restricted interfaces is also governed by Android per-

missions. Our analysis indicates that the expected protections of controlled interfaces are often not

consistent with the required permissions. It appears that modifications to one aspect often are not

consistently addressed in corresponding modifications to the other.

• Contradictory use. We compared our theoretical mappings to practical execution results on several

Android devices and discovered numerous unexpected cases of permissions being granted, contrary

to their theoretical attributes. Android put in place conditional restrictions to gradually phase out

outdated permissions limiting access by third-party developers to these permissions. In spite of the

efforts, these restrictions are not followed and restricted permissions are commonly granted by the

Android operating system on devices beyond the target app version.

Noncompliance in practice:

• Disregard of restrictions.

Our analysis shows a prevalent trend among third-party developers to routinely request permissions not

available to their apps, e.g., due target version of their app or permissions restrictions. We attribute

many of these instances to the confusion of developers due to out-of-date documentation and code

organization inconsistent with the official documentation.

We believe that a significant number of these occurrences are a result of developers being confused by

obsolete, incomplete, and contradicting documentation and inconsistent treatment of permissions and

interfaces in AOSP that does not align with the official documentation.

• Overprivileged applications. The problem of overprivileged applications has been extensively re-

searched over the past 10 years [2, 47, 63, 87]. Despite lacking any functionality that necessitates

permissions, our testing app was given over 60 unnecessary permissions, demonstrating that this issue

remains prevalent today.

42

6.2 Future work

We laid the groundwork for more fine-grained permission analysis and highlighted problems with current

Android documentation, in the source code and in developer-written articles. This research can be expanded

to leverage static path-sensitive analysis to further analyze the extent of inconsistent permission and call

categorization. Our findings can also be implemented in practice: static and dynamic analysis of third-party

applications could show which inconsistently-protected interfaces developers actually use and how these calls

are handled by the Android OS in practice.

Given that the state of the Android permission model and overall security is imperfect within the AOSP

alone, we advocate for more scrutinized control of vendor-customized images, such as the requirement for

the generation of custom restriction lists per vendor, more research into security implications of the closed-

source OS customization and requirements for vendors to comply and keep up with Android-defined security

practices.

43

References

[1] Yousra Aafer, Jianjun Huang, Ninghui Li Yi Sun X. Zhang, and Chen Tian. Acedroid: Normalizing
diverse android access control checks for inconsistency detection. In Network and Distributed System
Security Symposium, 2018.

[2] Yousra Aafer, Guanhong Tao, Jianjun Huang, Xiangyu Zhang, and Ninghui Li. Precise android api
protection mapping derivation and reasoning. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, page 1151–1164, 2018.

[3] Efthymios Alepis and Constantinos Patsakis. Unravelling security issues of runtime permissions in
android. Journal of Hardware and Systems Security, 3:45–63, 2019.

[4] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques Klein, Yves
Le Traon, Damien Octeau, and Patrick McDaniel. Flowdroid: Precise context, flow, field, object-
sensitive and lifecycle-aware taint analysis for android apps. In Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Implementation, page 259–269, 2014.

[5] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. Pscout: Analyzing the android per-
mission specification. In Proceedings of the 2012 ACM Conference on Computer and Communications
Security, page 217–228, 2012.

[6] Michael Backes, Sven Bugiel, Erik Derr, Patrick McDaniel, Damien Octeau, and Sebastian Weisger-
ber. On demystifying the android application framework: Re-visiting android permission specification
analysis. In Proceedings of the 25th USENIX Conference on Security Symposium, page 1101–1118, 2016.

[7] Michael Backes, Sven Bugiel, Christian Hammer, Oliver Schranz, and Philipp Von Styp-Rekowsky.
Boxify: Full-fledged app sandboxing for stock android. In Proceedings of the 24th USENIX Conference
on Security Symposium, page 691–706, 2015.

[8] David Barrera, H. Güneş Kayacik, Paul C. van Oorschot, and Anil Somayaji. A methodology for
empirical analysis of permission-based security models and its application to android. In Proceedings of
the 17th ACM Conference on Computer and Communications Security, page 73–84, 2010.

[9] Alastair R. Beresford, Andrew Rice, Nicholas Skehin, and Ripduman Sohan. Mockdroid: Trading privacy
for application functionality on smartphones. In Proceedings of the 12th Workshop on Mobile Computing
Systems and Applications, page 49–54, 2011.

[10] Antonio Bianchi, Jacopo Corbetta, Luca Invernizzi, Yanick Fratantonio, Christopher Kruegel, and Gio-
vanni Vigna. What the app is that? deception and countermeasures in the android user interface. In
Proceedings of the 2015 IEEE Symposium on Security and Privacy, page 931–948, 2015.

[11] Bram Bonné, Sai Teja Peddinti, Igor Bilogrevic, and Nina Taft. Exploring decision making with an-
droid’s runtime permission dialogs using in-context surveys. In Proceedings of the Thirteenth USENIX
Conference on Usable Privacy and Security, page 195–210, 2017.

[12] Theodore Book, Adam Pridgen, and Dan Wallach. Longitudinal analysis of android ad library permis-
sions. Computing Research Repository, 2013.

[13] Haipeng Cai, Ziyi Zhang, Li Li, and Xiaoqin Fu. A large-scale study of application incompatibilities in
android. In Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and
Analysis, page 216–227, 2019.

44

[14] Paolo Calciati, Konstantin Kuznetsov, Alessandra Gorla, and Andreas Zeller. Automatically granted
permissions in android apps: An empirical study on their prevalence and on the potential threats for
privacy. In Proceedings of the 17th International Conference on Mining Software Repositories, page
114–124, 2020.

[15] Huan Chang, Lingguang Lei, Kun Sun, Yuewu Wang, Jiwu Jing, Yi He, and Pingjian Wang. Vulnerable
service invocation and countermeasures. IEEE Transactions on Dependable and Secure Computing,
18:1733–1750, 2021.

[16] Abd Elhamed M. Dawoud and Sven Bugiel. Bringing balance to the force: Dynamic analysis of the
android application framework. In Network and Distributed System Security Symposium, 2021.

[17] Android Developers. Improving stability by reducing usage of non-sdk interfaces, 2018. https://

android-developers.googleblog.com/2018/02/improving-stability-by-reducing-usage.html.

[18] Android Developers. Package index, 2018. https://developer.android.com/reference/packages.

[19] Android Developers. Manifest.permission, 2019. https://developer.android.com/reference/

android/Manifest.permission#MANAGE_EXTERNAL_STORAGE.

[20] Android Developers. Manifest.permission, 2019. https://developer.android.com/reference/

android/Manifest.permission#QUERY_ALL_PACKAGES.

[21] Android Developers. Manifest.permission, 2019. https://developer.android.com/reference/

android/Manifest.permission#SCHEDULE_EXACT_ALARM.

[22] Android Developers. Updates to non-sdk interface restrictions in android 10, 2021. https://developer.
android.com/about/versions/10/non-sdk-q.

[23] Android Developers. Updates to non-sdk interface restrictions in android 11, 2021. https://developer.
android.com/about/versions/11/non-sdk-11.

[24] Android Developers. Aapt2 (android asset packaging tool), 2022. https://developer.android.com/

studio/command-line/aapt2.

[25] Android Developers. Android debug bridge (adb), 2022. https://developer.android.com/studio/

command-line/adb.

[26] Android Developers. Android developers reference, 2022. https://developer.android.com/

reference/android/R.attr#protectionLevel.

[27] Android Developers. apksigner, 2022. https://developer.android.com/studio/command-line/

apksigner.

[28] Android Developers. Define a custom app permission, 2022. https://developer.android.com/guide/
topics/permissions/defining.

[29] Android Developers. Manifest.permission, 2022. https://developer.android.com/reference/

android/Manifest.permission.

[30] Android Developers. Manifest.permission, 2022. https://developer.android.com/reference/

android/Manifest.permission#READ_NEARBY_STREAMING_POLICY.

[31] Android Developers. Permissions on android, 2022. https://developer.android.com/guide/topics/
permissions/overview#system-components.

[32] Android Developers. Platform version requirements, 2022. https://developer.android.com/guide/

topics/manifest/uses-sdk-element.

[33] Android Developers. Requires permission, 2022. https://developer.android.com/reference/

androidx/annotation/RequiresPermission.

45

https://android-developers.googleblog.com/2018/02/improving-stability-by-reducing-usage.html
https://android-developers.googleblog.com/2018/02/improving-stability-by-reducing-usage.html
https://developer.android.com/reference/packages
https://developer.android.com/reference/android/Manifest.permission#MANAGE_EXTERNAL_STORAGE
https://developer.android.com/reference/android/Manifest.permission#MANAGE_EXTERNAL_STORAGE
https://developer.android.com/reference/android/Manifest.permission#QUERY_ALL_PACKAGES
https://developer.android.com/reference/android/Manifest.permission#QUERY_ALL_PACKAGES
https://developer.android.com/reference/android/Manifest.permission#SCHEDULE_EXACT_ALARM
https://developer.android.com/reference/android/Manifest.permission#SCHEDULE_EXACT_ALARM
https://developer.android.com/about/versions/10/non-sdk-q
https://developer.android.com/about/versions/10/non-sdk-q
https://developer.android.com/about/versions/11/non-sdk-11
https://developer.android.com/about/versions/11/non-sdk-11
https://developer.android.com/studio/command-line/aapt2
https://developer.android.com/studio/command-line/aapt2
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://developer.android.com/reference/android/R.attr#protectionLevel
https://developer.android.com/reference/android/R.attr#protectionLevel
https://developer.android.com/studio/command-line/apksigner
https://developer.android.com/studio/command-line/apksigner
https://developer.android.com/guide/topics/permissions/defining
https://developer.android.com/guide/topics/permissions/defining
https://developer.android.com/reference/ android/Manifest.permission
https://developer.android.com/reference/ android/Manifest.permission
https://developer.android.com/reference/android/Manifest.permission#READ_NEARBY_STREAMING_POLICY
https://developer.android.com/reference/android/Manifest.permission#READ_NEARBY_STREAMING_POLICY
https://developer.android.com/guide/topics/permissions/overview#system-components
https://developer.android.com/guide/topics/permissions/overview#system-components
https://developer.android.com/guide/topics/manifest/uses-sdk-element
https://developer.android.com/guide/topics/manifest/uses-sdk-element
https://developer.android.com/reference/androidx/annotation/RequiresPermission
https://developer.android.com/reference/androidx/annotation/RequiresPermission

[34] Android Developers. Requires permission: Public fields - conditional, 2022. https://developer.

android.com/reference/androidx/annotation/RequiresPermission#conditional().

[35] Android Developers. Restrictions on non-sdk interfaces, 2022. https://developer.android.com/

guide/app-compatibility/restrictions-non-sdk-interfaces.

[36] Android Developers. Restrictions on non-sdk interfaces, 2022. https://developer.android.com/

guide/app-compatibility/restrictions-non-sdk-interfaces#list-names.

[37] Android Developers. Ui/application exerciser monkey, 2022. https://developer.android.com/

studio/test/other-testing-tools/monkey.

[38] Android Developers. Updates to non-sdk interface restrictions in android 11, 2022. https://developer.
android.com/about/versions/11/non-sdk-11.

[39] Android Developers. Updates to non-sdk interface restrictions in android 12, 2022. https://developer.
android.com/about/versions/12/non-sdk-12.

[40] Android Developers. Updates to non-sdk interface restrictions in android 13, 2022. https://developer.
android.com/about/versions/11/non-sdk-13.

[41] Android Developers. Behavior changes: Apps targeting android 13 or higher, 2023. https://developer.
android.com/about/versions/13/behavior-changes-13.

[42] Android Developers. Meet google play’s target api level requirement, 2023. https://developer.

android.com/google/play/requirements/target-sdk#why-target.

[43] Android Developers. Notification runtime permission, 2023. https://developer.android.com/

develop/ui/views/notifications/notification-permission#new-apps.

[44] Nicole Eling, Siegfried Rasthofer, Max Kolhagen, Eric Bodden, and Peter Buxmann. Investigating users’
reaction to fine-grained data requests: A market experiment. In Proceedings of the 2016 49th Hawaii
International Conference on System Sciences (HICSS), page 3666–3675, 2016.

[45] Mohamed Elsabagh, Ryan Johnson, Angelos Stavrou, Chaoshun Zuo, Qingchuan Zhao, and Zhiqiang Lin.
Firmscope: Automatic uncovering of privilege-escalation vulnerabilities in pre-installed apps in android
firmware. In Proceedings of the 29th USENIX Conference on Security Symposium, page 2379–2396, 2020.

[46] William Enck, Machigar Ongtang, and Patrick McDaniel. On lightweight mobile phone application
certification. In Proceedings of the 16th ACM Conference on Computer and Communications Security,
page 235–245, 2009.

[47] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner. Android permissions
demystified. In Proceedings of the 18th ACM Conference on Computer and Communications Security,
page 627–638, 2011.

[48] Adrienne Porter Felt, Helen J. Wang, Alexander Moshchuk, Steven Hanna, and Erika Chin. Permission
re-delegation: Attacks and defenses. In Proceedings of the 20th USENIX Conference on Security, page 22,
2011.

[49] Yanick Fratantonio, Chenxiong Qian, Simon P. Chung, and Wenke Lee. Cloak and dagger: From two
permissions to complete control of the ui feedback loop. In 2017 IEEE Symposium on Security and
Privacy (SP), pages 1041–1057, 2017.

[50] Xing Gao, Dachuan Liu, Haining Wang, and Kun Sun. Pmdroid: Permission supervision for android
advertising. In 2015 IEEE 34th Symposium on Reliable Distributed Systems (SRDS), pages 120–129,
2015.

[51] Google. Android open source project, 2023. https://android.googlesource.com/.

46

https://developer.android.com/reference/androidx/annotation/RequiresPermission#conditional()
https://developer.android.com/reference/androidx/annotation/RequiresPermission#conditional()
https://developer.android.com/guide/app-compatibility/restrictions-non-sdk-interfaces
https://developer.android.com/guide/app-compatibility/restrictions-non-sdk-interfaces
https://developer.android.com/guide/app-compatibility/restrictions-non-sdk-interfaces#list-names
https://developer.android.com/guide/app-compatibility/restrictions-non-sdk-interfaces#list-names
https://developer.android.com/studio/test/other-testing-tools/monkey
https://developer.android.com/studio/test/other-testing-tools/monkey
https://developer.android.com/about/versions/11/non-sdk-11
https://developer.android.com/about/versions/11/non-sdk-11
https://developer.android.com/about/versions/12/non-sdk-12
https://developer.android.com/about/versions/12/non-sdk-12
https://developer.android.com/about/versions/11/non-sdk-13
https://developer.android.com/about/versions/11/non-sdk-13
https://developer.android.com/about/versions/13/behavior-changes-13
https://developer.android.com/about/versions/13/behavior-changes-13
https://developer.android.com/google/play/requirements/target-sdk#why-target
https://developer.android.com/google/play/requirements/target-sdk#why-target
https://developer.android.com/develop/ui/views/notifications/notification-permission#new-apps
https://developer.android.com/develop/ui/views/notifications/notification-permission#new-apps
https://android.googlesource.com/

[52] Google. Define a custom app permission, 2023. https://developer.android.com/guide/topics/

permissions/defining.

[53] Sigmund Albert Gorski, Benjamin Andow, Adwait Nadkarni, Sunil Manandhar, William Enck, Eric
Bodden, and Alexandre Bartel. Acminer: Extraction and analysis of authorization checks in android’s
middleware. In Proceedings of the Ninth ACM Conference on Data and Application Security and Privacy,
page 25–36, 2019.

[54] Dongjie He, Lian Li, Lei Wang, Hengjie Zheng, Guangwei Li, and Jingling Xue. Understanding and
detecting evolution-induced compatibility issues in android apps. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, page 167–177, 2018.

[55] Yi He, Yacong Gu, Purui Su, Kun Sun, Yajin Zhou, Zhi Wang, and Qi Li. A systematic study of android
non-sdk (hidden) service api security. IEEE Transactions on Dependable and Secure Computing, pages
1–1, 2022.

[56] Yi He, Yuan Zhou, Yajin Zhou, Qi Li, Kun Sun, Yacong Gu, and Yong Jiang. Jni global references
are still vulnerable: Attacks and defenses. IEEE Transactions on Dependable and Secure Computing,
19:607–619, 2022.

[57] Grant Hernandez, Dave Jing Tian, Anurag Swarnim Yadav, Byron J. Williams, and Kevin R. B. Butler.
Bigmac: Fine-grained policy analysis of android firmware. In Proceedings of the 29th USENIX Conference
on Security Symposium, page 271–287, 2020.

[58] Jinseong Jeon, Kristopher K. Micinski, Jeffrey A. Vaughan, Ari Fogel, Nikhilesh Reddy, Jeffrey S. Foster,
and Todd Millstein. Dr. android and mr. hide: Fine-grained permissions in android applications. In
Proceedings of the Second ACM Workshop on Security and Privacy in Smartphones and Mobile Devices,
page 3–14, 2012.

[59] Haofeng Jiao, Xiaohong Li, Lei Zhang, Guangquan Xu, and Zhiyong Feng. Hybrid detection using
permission analysis for android malware. In International Conference on Security and Privacy in Com-
munication Networks, pages 541–545, 11 2015.

[60] ElMouatez Billah Karbab, Mourad Debbabi, Abdelouahid Derhab, and Djedjiga Mouheb. Maldozer:
Automatic framework for android malware detection using deep learning. Digital Investigation, 24:S48–
S59, 2018.

[61] Patrick Gage Kelley, Sunny Consolvo, Lorrie Faith Cranor, Jaeyeon Jung, Norman Sadeh, and David
Wetherall. A conundrum of permissions: Installing applications on an android smartphone. In Financial
Cryptography and Data Security, page 68–79, 2012.

[62] Li Li, Tegawendé F. Bissyandé, Haoyu Wang, and Jacques Klein. Cid: Automating the detection of api-
related compatibility issues in android apps. In Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis, page 153–163, 2018.

[63] Li Li, Tegawendé F. Bissyandé, Yves Le Traon, and Jacques Klein. Accessing inaccessible android apis:
An empirical study. In 2016 IEEE International Conference on Software Maintenance and Evolution
(ICSME), pages 411–422, 2016.

[64] Li Li, Jun Gao, Tegawendé F. Bissyandé, Lei Ma, Xin Xia, and Jacques Klein. Cda: Characterising
deprecated android apis. Empirical Software Engineering, 25:2058–2098, 2020.

[65] Jialiu Lin, Bin Liu, Norman Sadeh, and Jason I. Hong. Modeling users’ mobile app privacy preferences:
Restoring usability in a sea of permission settings. In Proceedings of the Tenth USENIX Conference on
Usable Privacy and Security, page 199–212, 2014.

[66] Mario Linares-Vásquez, Gabriele Bavota, Carlos Bernal-Cárdenas, Massimiliano Di Penta, Rocco
Oliveto, and Denys Poshyvanyk. Api change and fault proneness: A threat to the success of android apps.
In Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering, page 477–487,
2013.

47

https://developer.android.com/guide/topics/permissions/defining
https://developer.android.com/guide/topics/permissions/defining

[67] Mario Linares-Vásquez, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and Denys Poshyvanyk.
How do api changes trigger stack overflow discussions? a study on the android sdk. In Proceedings of
the 22nd International Conference on Program Comprehension, page 83–94, 2014.

[68] Baozheng Liu, Chao Zhang, Guang Gong, Yishun Zeng, Haifeng Ruan, and Jianwei Zhuge. Fans: Fuzzing
android native system services via automated interface analysis. In Proceedings of the 29th USENIX
Conference on Security Symposium, page 307–323, 2020.

[69] Bin Liu, Mads Schaarup Andersen, Florian Schaub, Hazim Almuhimedi, Shikun Zhang, Norman Sadeh,
Alessandro Acquisti, and Yuvraj Agarwal. Follow my recommendations: A personalized privacy assistant
for mobile app permissions. In Proceedings of the Twelfth USENIX Conference on Usable Privacy and
Security, page 27–41, 2016.

[70] Pei Liu, Li Li, Yichun Yan, Mattia Fazzini, and John Grundy. Identifying and characterizing silently-
evolved methods in the android api. In Proceedings of the 43rd International Conference on Software
Engineering: Software Engineering in Practice, page 308–317, 2021.

[71] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. Chex: Statically vetting android apps
for component hijacking vulnerabilities. In Proceedings of the 2012 ACM Conference on Computer and
Communications Security, page 229–240, 2012.

[72] Lannan Luo, Qiang Zeng, Chen Cao, Kai Chen, Jian Liu, Limin Liu, Neng Gao, Min Yang, Xinyu
Xing, and Peng Liu. System service call-oriented symbolic execution of android framework with applica-
tions to vulnerability discovery and exploit generation. In Proceedings of the 15th Annual International
Conference on Mobile Systems, Applications, and Services, page 225–238, 2017.

[73] René Mayrhofer, Jeffrey Vander Stoep, Chad Brubaker, and Nick Kralevich. The android platform
security model. ACM Transactions on Privacy and Security, 24:1–35, apr 2021.

[74] Tyler McDonnell, Baishakhi Ray, and Miryung Kim. An empirical study of api stability and adop-
tion in the android ecosystem. In Proceedings of the 2013 IEEE International Conference on Software
Maintenance, page 70–79, 2013.

[75] Mohammad Nauman, Sohail Khan, and Xinwen Zhang. Apex: Extending android permission model
and enforcement with user-defined runtime constraints. In Proceedings of the 5th ACM Symposium on
Information, Computer and Communications Security, page 328–332, 2010.

[76] Sai Teja Peddinti, Igor Bilogrevic, Nina Taft, Martin Pelikan, Úlfar Erlingsson, Pauline Anthonysamy,
and Giles Hogben. Reducing permission requests in mobile apps. In Proceedings of the Internet Mea-
surement Conference, page 259–266, 2019.

[77] Anh Pham, Italo Dacosta, Eleonora Losiouk, John Stephan, Kévin Huguenin, and Jean-Pierre Hubaux.
Hidemyapp: Hiding the presence of sensitive apps on android. In Proceedings of the 28th USENIX
Conference on Security Symposium, page 711–728, 2019.

[78] Android Open Source Project. Privileged permission allowlisting, 2022. https://source.android.

com/docs/core/config/perms-allowlist.

[79] James Sellwood and Jason Crampton. Sleeping android: The danger of dormant permissions. In
Proceedings of the Third ACM Workshop on Security and Privacy in Smartphones & Mobile Devices,
page 55–66, 2013.

[80] Yuru Shao, Qi Alfred Chen, Z. Morley Mao, Jason Ott, and Zhiyun Qian. Kratos: Discovering inconsis-
tent security policy enforcement in the android framework. In Network and Distributed System Security
Symposium, 2016.

[81] Mark D. Syer, Meiyappan Nagappan, Bram Adams, and Ahmed E. Hassan. Studying the relationship
between source code quality and mobile platform dependence. Software Quality Journal, 23:485–508,
2015.

48

https://source.android.com/docs/core/config/perms-allowlist
https://source.android.com/docs/core/config/perms-allowlist

[82] Güliz Seray Tuncay, Soteris Demetriou, Karan Ganju, and Carl A. Gunter. Resolving the predicament
of android custom permissions. In Network and Distributed System Security Symposium, 2018.

[83] Guliz Seray Tuncay, Carl A. Gunter, Tao Xie, Adam Bates, and Suman Jana. Practical least privilege
for cross-origin interactions on mobile operating systems. PhD thesis, University of Illinois at Urbana-
Champaign, 2019.

[84] Güliz Seray Tuncay, Jingyu Qian, and Carl A. Gunter. See No Evil: Phishing for Permissions with False
Transparency, page 415–432. USENIX Association, 2020.

[85] Fabo Wang, Yuqing Zhang, Kai Wang, Peng Liu, and Wenjie Wang. Stay in your cage! a sound sandbox
for third-party libraries on android. In European Symposium on Research in Computer Security, page
458–476, 2016.

[86] Lili Wei, Yepang Liu, and Shing-Chi Cheung. Taming android fragmentation: Characterizing and
detecting compatibility issues for android apps. In Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering, page 226–237, 2016.

[87] Xuetao Wei, Lorenzo Gomez, Iulian Neamtiu, and Michalis Faloutsos. Permission evolution in the
android ecosystem. In Proceedings of the 28th Annual Computer Security Applications Conference, page
31–40, 2012.

[88] Primal Wijesekera, Arjun Baokar, Ashkan Hosseini, Serge Egelman, David Wagner, and Konstantin
Beznosov. Android permissions remystified: A field study on contextual integrity. In Proceedings of the
24th USENIX Conference on Security Symposium, page 499–514, 2015.

[89] Lei Wu, Michael Grace, Yajin Zhou, Chiachih Wu, and Xuxian Jiang. The impact of vendor cus-
tomizations on android security. In Proceedings of the 2013 ACM SIGSAC Conference on Computer &
Communications Security, page 623–634, 2013.

[90] Hao Xia, Yuan Zhang, Yingtian Zhou, Xiaoting Chen, Yang Wang, Xiangyu Zhang, Shuaishuai Cui,
Geng Hong, Xiaohan Zhang, Min Yang, and Zhemin Yang. How android developers handle evolution-
induced api compatibility issues: A large-scale study. In Proceedings of the ACM/IEEE 42nd Interna-
tional Conference on Software Engineering, page 886–898, 2020.

[91] Guowei Yang, Jeffrey Jones, Austin Moninger, and Meiru Che. How do android operating system updates
impact apps? In Proceedings of the 5th International Conference on Mobile Software Engineering and
Systems, page 156–160, 2018.

[92] Shishuai Yang, Rui Li, Jiongyi Chen, Wenrui Diao, and Shanqing Guo. Demystifying android non-sdk
apis: Measurement and understanding. In Proceedings of the 44th International Conference on Software
Engineering, page 647–658, 2022.

[93] Wei Yang, Xusheng Xiao, Benjamin Andow, Li Sihan, Tao Xie, and William Enck. Appcontext: Differen-
tiating malicious and benign mobile app behaviors using context. In Proceedings of the 37th International
Conference on Software Engineering - Volume 1, page 303–313, 2015.

[94] Wu Zhou, Yajin Zhou, Xuxian Jiang, and Peng Ning. Detecting repackaged smartphone applications in
third-party android marketplaces. In Proceedings of the Second ACM Conference on Data and Applica-
tion Security and Privacy, page 317–326, 2012.

49

Appendix A

Unified permission mapping example

Figure A.1: An entry of the Unified permission mapping

50

Appendix B

Unified guarded call mapping example

Figure B.1: An entry of the Unified guarded call mapping

51

Appendix C

Conflicts in the Android 13 Manifest

Here, we report conflicts found in Android 13 for the convenience of Android developers to
review and fix, as it is the most recent OS version.

android.permission.ACCESS IMS CALL SERVICE : protection level - signature, permission in the Runtime
section

android.permission.MANAGE OWN CALLS : protection level - normal, permission in the Runtime section

android.permission.ACCESS UCE PRESENCE SERVICE : protection level - signature, permission in the Run-
time section

android.permission.ACCESS UCE OPTIONS SERVICE : protection level - signature, permission in the Runtime
section

android.permission.USE FINGERPRINT : protection level - normal, permission in the Runtime section

android.permission.USE BIOMETRIC : protection level - normal, permission in the Runtime section

android.permission.SEND RESPOND VIA MESSAGE : annotated as not for third-party apps, yet not excluded
from the public API; restriction - public, yet annotated as not for third-party apps

android.permission.INSTALL LOCATION PROVIDER : annotated as not for third-party apps, yet not excluded
from the public API; restriction - public, yet annotated as not for third-party apps

android.permission.LOCATION HARDWARE : annotated as not for third-party apps, yet not excluded from the
public API; restriction - public, yet annotated as not for third-party apps

android.permission.OVERRIDE WIFI CONFIG : annotated as not for third-party apps, yet not excluded from
the public API; restriction - public, yet annotated as not for third-party apps

android.permission.BLUETOOTH PRIVILEGED : annotated as not for third-party apps, yet not excluded from
the public API; restriction - public, yet annotated as not for third-party apps

android.permission.GET ACCOUNTS : protection level - dangerous, permission in the Install section

android.permission.ACCOUNT MANAGER : annotated as not for third-party apps, yet not excluded from the
public API; restriction - public, yet annotated as not for third-party apps

android.permission.MODIFY PHONE STATE : annotated as not for third-party apps, yet not excluded from the
public API; restriction - public, yet annotated as not for third-party apps

android.permission.MANAGE DOCUMENTS : described as restricted, yet not excluded from the public API;
described as restricted, yet restriction - public

android.permission.SET TIME : annotated as not for third-party apps, yet not excluded from the public
API; restriction - public, yet annotated as not for third-party apps

android.permission.SET TIME ZONE : annotated as not for third-party apps, yet not excluded from the
public API; restriction - public, yet annotated as not for third-party apps

android.permission.WRITE GSERVICES : annotated as not for third-party apps, yet not excluded from the
public API; restriction - public, yet annotated as not for third-party apps

android.permission.SET ANIMATION SCALE : annotated as not for third-party apps, yet not excluded from
the public API; restriction - public, yet annotated as not for third-party apps

android.permission.MOUNT UNMOUNT FILESYSTEMS : annotated as not for third-party apps, yet not excluded
from the public API; restriction - public, yet annotated as not for third-party apps

android.permission.MOUNT FORMAT FILESYSTEMS : annotated as not for third-party apps, yet not excluded
from the public API; restriction - public, yet annotated as not for third-party apps

android.permission.WRITE APN SETTINGS : annotated as not for third-party apps, yet not excluded from the
public API; restriction - public, yet annotated as not for third-party apps

android.permission.WRITE SECURE SETTINGS : annotated as not for third-party apps, yet not excluded from
the public API; restriction - public, yet annotated as not for third-party apps

android.permission.DUMP : annotated as not for third-party apps, yet not excluded from the public API;
restriction - public, yet annotated as not for third-party apps

52

android.permission.READ LOGS : annotated as not for third-party apps, yet not excluded from the public
API; restriction - public, yet annotated as not for third-party apps

android.permission.SET DEBUG APP : annotated as not for third-party apps, yet not excluded from the
public API; restriction - public, yet annotated as not for third-party apps

android.permission.SET PROCESS LIMIT : annotated as not for third-party apps, yet not excluded from the
public API; restriction - public, yet annotated as not for third-party apps

android.permission.SET ALWAYS FINISH : annotated as not for third-party apps, yet not excluded from the
public API; restriction - public, yet annotated as not for third-party apps

android.permission.SIGNAL PERSISTENT PROCESSES : annotated as not for third-party apps, yet not excluded
from the public API; restriction - public, yet annotated as not for third-party apps

android.permission.DIAGNOSTIC : annotated as not for third-party apps, yet not excluded from the public
API; restriction - public, yet annotated as not for third-party apps

android.permission.STATUS BAR : annotated as not for third-party apps, yet not excluded from the public
API; restriction - public, yet annotated as not for third-party apps

android.permission.UPDATE DEVICE STATS : annotated as not for third-party apps, yet not excluded from
the public API; restriction - public, yet annotated as not for third-party apps

android.permission.READ INPUT STATE : annotated as not for third-party apps, yet not excluded from the
public API; restriction - public, yet annotated as not for third-party apps

android.permission.INSTALL PACKAGES : annotated as not for third-party apps, yet not excluded from the
public API; restriction - public, yet annotated as not for third-party apps

android.permission.DELETE PACKAGES : annotated as not for third-party apps, yet not excluded from the
public API; restriction - public, yet annotated as not for third-party apps

android.permission.CHANGE COMPONENT ENABLED STATE : annotated as not for third-party apps, yet not ex-
cluded from the public API; restriction - public, yet annotated as not for third-party apps

android.permission.CAPTURE AUDIO OUTPUT : annotated as not for third-party apps, yet not excluded from
the public API; restriction - public, yet annotated as not for third-party apps

android.permission.MEDIA CONTENT CONTROL : annotated as not for third-party apps, yet not excluded from
the public API; restriction - public, yet annotated as not for third-party apps

android.permission.REBOOT : annotated as not for third-party apps, yet not excluded from the public API;
restriction - public, yet annotated as not for third-party apps

android.permission.FACTORY TEST : annotated as not for third-party apps, yet not excluded from the public
API; restriction - public, yet annotated as not for third-party apps

android.permission.BROADCAST PACKAGE REMOVED : annotated as not for third-party apps, yet not excluded
from the public API; restriction - public, yet annotated as not for third-party apps

android.permission.BROADCAST SMS : annotated as not for third-party apps, yet not excluded from the
public API; restriction - public, yet annotated as not for third-party apps

android.permission.BROADCAST WAP PUSH : annotated as not for third-party apps, yet not excluded from the
public API; restriction - public, yet annotated as not for third-party apps

android.permission.MASTER CLEAR : annotated as not for third-party apps, yet not excluded from the public
API; restriction - public, yet annotated as not for third-party apps

android.permission.CALL PRIVILEGED : annotated as not for third-party apps, yet not excluded from the
public API; restriction - public, yet annotated as not for third-party apps

android.permission.CONTROL LOCATION UPDATES : annotated as not for third-party apps, yet not excluded
from the public API; restriction - public, yet annotated as not for third-party apps

android.permission.ACCESS CHECKIN PROPERTIES : annotated as not for third-party apps, yet not excluded
from the public API; restriction - public, yet annotated as not for third-party apps

android.permission.BIND APPWIDGET : annotated as not for third-party apps, yet not excluded from the
public API; restriction - public, yet annotated as not for third-party apps

android.permission.GLOBAL SEARCH : annotated as not for third-party apps, yet not excluded from the
public API; restriction - public, yet annotated as not for third-party apps

android.permission.BIND CARRIER SERVICES : described as restricted, yet not excluded from the public API;
described as restricted, yet restriction - public

android.permission.WRITE OBB : protection level - signature, permission in the Runtime section
android.permission.CALL COMPANION APP : protection level - normal, permission in the Runtime section

53

android.permission.ENABLE TEST HARNESS MODE : restriction - blacklist, yet not annotated as not for third-
party apps

android.permission.MANAGE DYNAMIC SYSTEM : restriction - blacklist, yet not annotated as not for third-party
apps

android.permission.START ACTIVITY AS CALLER : restriction - blacklist, yet not annotated as not for third-
party apps

android.permission.REQUEST INCIDENT REPORT APPROVAL : restriction - blacklist, yet not annotated as not
for third-party apps

android.permission.TEST MANAGE ROLLBACKS : restriction - blacklist, yet not annotated as not for third-party
apps

android.permission.MONITOR DEFAULT SMS PACKAGE : restriction - blacklist, yet not annotated as not for
third-party apps

android.permission.MANAGE SENSOR PRIVACY : protection level - internal, yet not annotated as not for
third-party apps

android.permission.MONITOR INPUT : restriction - blacklist, yet not annotated as not for third-party apps

android.permission.ACCESS MESSAGES ON ICC : protection level - signature, permission in the Runtime
section

android.permission.BIND CELL BROADCAST SERVICE : protection level - signature, permission in the Run-
time section

android.permission.MANAGE EXTERNAL STORAGE : protection level - signature, permission in the Runtime
section; described as restricted, yet not excluded from the public API; described as restricted, yet restriction
- public

android.permission.EXEMPT FROM AUDIO RECORD RESTRICTIONS : protection level - signature, permission in
the Runtime section

android.permission.CAMERA OPEN CLOSE LISTENER : protection level - signature, permission in the Runtime
section

android.permission.VIBRATE ALWAYS ON : restriction - blacklist, yet not annotated as not for third-party
apps

android.permission.BIND CONTROLS : annotated as not for third-party apps, yet not excluded from the
public API; restriction - public, yet annotated as not for third-party apps

android.permission.ACT AS PACKAGE FOR ACCESSIBILITY : restriction - blacklist, yet not annotated as not
for third-party apps

android.permission.MANAGE COMPANION DEVICES : restriction - blacklist, yet not annotated as not for third-
party apps

android.permission.PEEK DROPBOX DATA : restriction - blacklist, yet not annotated as not for third-party
apps

android.permission.MANAGE MEDIA : protection level - signature, permission in the Runtime section

android.permission.HIGH SAMPLING RATE SENSORS : protection level - normal, permission in the Runtime
section

android.permission.BLUETOOTH SCAN : protection level - dangerous, permission in the Install section

android.permission.BLUETOOTH CONNECT : protection level - dangerous, permission in the Install section

android.permission.BLUETOOTH ADVERTISE : protection level - dangerous, permission in the Install section

android.permission.UWB RANGING : protection level - dangerous, permission in the Install section

android.permission.VIRTUAL INPUT DEVICE : restriction - blacklist, yet not annotated as not for third-party
apps

android.permission.CAMERA INJECT EXTERNAL CAMERA : restriction - blacklist, yet not annotated as not for
third-party apps

android.permission.CLEAR FREEZE PERIOD : restriction - blacklist, yet not annotated as not for third-party
apps

android.permission.FORCE DEVICE POLICY MANAGER LOGS : restriction - blacklist, yet not annotated as not
for third-party apps

android.permission.START FOREGROUND SERVICES FROM BACKGROUND : annotated as not for third-party apps,
yet not excluded from the public API; restriction - public, yet annotated as not for third-party apps

54

android.permission.TOGGLE AUTOMOTIVE PROJECTION : protection level - internal, yet not annotated as not
for third-party apps

android.permission.MANAGE CREDENTIAL MANAGEMENT APP : restriction - blacklist, yet not annotated as not
for third-party apps

android.permission.KEEP UNINSTALLED PACKAGES : restriction - blacklist, yet not annotated as not for third-
party apps

android.permission.ASSOCIATE COMPANION DEVICES : protection level - internal, yet not annotated as not
for third-party apps

android.permission.OVERRIDE DISPLAY MODE REQUESTS : restriction - blacklist, yet not annotated as not for
third-party apps

android.permission.MODIFY REFRESH RATE SWITCHING TYPE : restriction - blacklist, yet not annotated as not
for third-party apps

android.permission.QUERY AUDIO STATE : restriction - blacklist, yet not annotated as not for third-party
apps

android.permission.READ DREAM SUPPRESSION : restriction - blacklist, yet not annotated as not for third-
party apps

android.permission.SET AND VERIFY LOCKSCREEN CREDENTIALS : restriction - blacklist, yet not annotated as
not for third-party apps

android.permission.OBSERVE SENSOR PRIVACY : protection level - internal, yet not annotated as not for
third-party apps

android.permission.ASSOCIATE INPUT DEVICE TO DISPLAY : restriction - blacklist, yet not annotated as not
for third-party apps

android.permission.RESET APP ERRORS : restriction - blacklist, yet not annotated as not for third-party apps

android.permission.INPUT CONSUMER : restriction - blacklist, yet not annotated as not for third-party apps

android.permission.CONTROL DEVICE STATE : restriction - blacklist, yet not annotated as not for third-party
apps

android.permission.GET PEOPLE TILE PREVIEW : restriction - blacklist, yet not annotated as not for third-
party apps

android.permission.READ GLOBAL APP SEARCH DATA : protection level - internal, yet not annotated as not
for third-party apps

android.permission.LOCATION BYPASS : protection level - signature, permission in the Runtime section

android.permission.READ BASIC PHONE STATE : protection level - normal, permission in the Runtime section

android.permission.MANAGE WIFI NETWORK SELECTION : annotated as not for third-party apps, yet not ex-
cluded from the public API; restriction - public, yet annotated as not for third-party apps

android.permission.MANAGE WIFI INTERFACES : annotated as not for third-party apps, yet not excluded from
the public API; restriction - public, yet annotated as not for third-party apps

android.permission.NEARBY WIFI DEVICES : protection level - dangerous, permission in the Install section

android.permission.REQUEST COMPANION PROFILE APP STREAMING : annotated as not for third-party apps, yet
not excluded from the public API; restriction - public, yet annotated as not for third-party apps

android.permission.REQUEST COMPANION PROFILE AUTOMOTIVE PROJECTION : annotated as not for third-party
apps, yet not excluded from the public API; restriction - public, yet annotated as not for third-party apps;
protection level - internal, yet not excluded from the public API; restriction - public, yet protection level -
internal

android.permission.REQUEST COMPANION PROFILE COMPUTER : annotated as not for third-party apps, yet not
excluded from the public API; restriction - public, yet annotated as not for third-party apps

android.permission.USE ATTESTATION VERIFICATION SERVICE : restriction - blacklist, yet not annotated as
not for third-party apps

android.permission.VERIFY ATTESTATION : restriction - blacklist, yet not annotated as not for third-party
apps

android.permission.BIND ATTESTATION VERIFICATION SERVICE : restriction - blacklist, yet not annotated as
not for third-party apps

android.permission.REQUEST UNIQUE ID ATTESTATION : restriction - blacklist, yet not annotated as not for
third-party apps

55

android.permission.BIND GAME SERVICE : restriction - blacklist, yet not annotated as not for third-party
apps

android.permission.SUBSCRIBE TO KEYGUARD LOCKED STATE : protection level - internal, yet not excluded
from the public API; restriction - public, yet protection level - internal; protection level - internal, yet
not annotated as not for third-party apps

android.permission.MODIFY TOUCH MODE STATE : restriction - blacklist, yet not annotated as not for third-
party apps

android.permission.MODIFY USER PREFERRED DISPLAY MODE : restriction - blacklist, yet not annotated as not
for third-party apps

android.permission.READ ASSISTANT APP SEARCH DATA : protection level - internal, yet not excluded from
the public API; restriction - public, yet protection level - internal; protection level - internal, yet not
annotated as not for third-party apps

android.permission.READ HOME APP SEARCH DATA : protection level - internal, yet not excluded from the
public API; restriction - public, yet protection level - internal; protection level - internal, yet not annotated
as not for third-party apps

android.permission.CREATE VIRTUAL DEVICE : protection level - internal, yet not annotated as not for
third-party apps

android.permission.SEND SAFETY CENTER UPDATE : protection level - internal, yet not annotated as not for
third-party apps

android.permission.MANAGE SAFETY CENTER : protection level - internal, yet not annotated as not for
third-party apps

android.permission.ACCESS AMBIENT CONTEXT EVENT : protection level - internal, yet not annotated as not
for third-party apps

56

	Permission to Use
	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	Introduction
	Background and related work
	Background
	Related Work

	Android mappings framework
	Building the unified permission mapping
	Building the unified guarded call mapping
	An approach for automated app analysis: PChecker

	Findings of theoretical analysis
	Retrieved permission categories
	Restriction
	Tag
	Introduced
	Deprecated
	Protection
	Type
	Status
	Usage

	Permission transition across Android versions
	Permission-labelling analysis
	Permission-labelling conflicts
	Element-Permission inconsistencies

	Results of practical analysis
	Experimental analysis with PChecker
	Benchmark app analysis
	Automated analysis
	Requested permissions
	Granted permissions
	Undefined permissions

	Conclusion and discussion
	Summary
	Summary of contributions
	Discussion

	Future work

	References
	Appendix Unified permission mapping example
	Appendix Unified guarded call mapping example
	Appendix Conflicts in the Android 13 Manifest

