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Abstract

Background: Survival anal ys i sto-eé vse nsto nefiheiCoyesmidedcga | | e d
used widely in survival analysis, where the covariates act multiplicatively on unknown baseline
hazards. However, the Caxodel requires the proportionality assumption, which limits its
applications. The additive hazards model has been used as an alternative to the Cox model,

where the covariates act additively on unknown baseline hazards.

Objectives and methods In this thesis performance of the Cox multiplicative hazards model

and the additive hazards model have béemonstratednd applied to the transfer, lifting and
repositioning (TLR) injury prevention studyThe TLR injury prevention study was a
retrospective, prpost intervention study that utilized a neendomized control group. There

were 1,467 healthcare workers from six hospitals in Saskatchewan, Canada who were injured
from Januaryl, 1999 to December 1, 2006. Bidentified data sets were received from the
Sakat oon Health Region and Regina Quobappelle

was considered as the outcome variable.e mo d e | ffit wastalsalassessesl.

Results Of a total of 1,467 individuals, 149 (56.7%) in the control group and43.8%) in the
intervention group had repeated injurdisring the study periodNurses and nursing aides had

the highest repeated TLR injuries (84.8%) among occupations. Back, neck and shoatders

the most common body parisjured (74.9%). These coviates were significant in both Cox
multiplicative and additive hazards models. The intervention group had 27% fewer repeated
injuries than the control group in the multiplicative hazards model (HR= 0.63; 95% Ci=0.48
0.82; pvalue=0.0002). In the additiveodel, the hazard difference between the intervention and

the control groups was 0.002.

Conclusion Both multiplicative and additive hazards models showed similar results, indicating
that the TLRinjury preventionintervention was effective in reducing eged injuries. The
additive hazards model is not widely used, but the coefficient of the covariates is easy to
interpret in an additive manner. The additive hazards model should be considered when the

proportionality assumption of the Cox modeti@ubtfu.
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1. Introduction

1.1 Background

1.11 Survival Analysis

ASur vival analysiso descr i beallledfiomawelideflngds i s o f
time origin until the occurrence of some particular event orpenat (1). For that reason,
survival analysitweventofaperal yaildedarmdi me used
fields, such asnedicine,public health, social scien@ndengineering. Here, time is in units of

years, months, weeker days Time measure$rom the beginning of followup of a subject until

an event occurgra studyendddier e, an fAevento I s @deecidenrces ur r en
relapse from remission, or recovery, which may happen to an indivi@yaln the field of
engineering, survival angis is calledreliability theory reliability analysis, or failure time

analysis because the main focus is in modeling the lifetimes of machines or electronic
componets (3). In sociology or economics, survival analysis is called event history analysis,
duration analysispr duration modeling. Arexample of time to an event modelingtire social
scien@scould be the rate or time at/to which former convicts commit a crime again after they

have been released. Because analysis of time to event data arises in a number of applied fields,
the developments from diverse fields have been consolidatethmffield of "survival analysis"

(4). Although survival analysis is tbed different names in various fieldsich as event history

analysis, reliability analysis, failure time analysis, or duration analysises the same analytic

techniquegb).


http://en.wikipedia.org/wiki/Reliability_theory

1.1.2 Musculoskeletal Injuries

Injuries of the muscles, nerves, tendons, ligaments, joints, cartilage, or spinal discs are termed
either musculoskeletal injuries (MSIs) psculoskeletal disorders (MSDs). These injuries are

not usually the result of any immediate or acute ev&nth as a slip, trip, or falbut reflect a

more gradual or chronic development. There are other terms that may be used to explain MSls,
such asrepetitive strain injuries (RSIs), cumulative trauma disorders, overuse injuries, and
repetitive motion disorder). According tothe U.S. Bureau of Labor Statistics, MSIs include
cases where the nature of the injury or illness is sprains, strains, back pain, hurt back, soreness,
pain, hurt, except the baclcarpal tunnel syndrome, or musculoskeletal system and connective
tissue disases and disorders, when the event or exposure leading to the injury or illness is bodily
reaction/bending, climbing, crawling, reaching, twisting, overexertion, or repefifipnTo

receive compensation from the workplace safety and insurance board (WSIB) for MSls, the
injury must belong to one of the following categorigstains, strains, traumatic inflammation of

eg., muscles, tendons, ligaments, joimsusculoskeletal system and connective tissue diseases
and disordersinflammation and irritation of joints, tendons, muscles and connective tissues
musculoskeletal system and connective tissue diseases and diseubér asfiboromyalgia,
fibrosis, myofasciitis back pain, hurt backsoreness, painhurt, carpal tunnel syndrome
symptoms involving nervous and musculoskeletal systemsultiple symptoms involving the

head and nec{8).

Some important causes of MSls are (in combination or when one occursxiteaneelevel of
forceful exertion) repetitive movements, awkward postures, combination effects, or secondary

risk factors(6). Here fif orceo i s defined as the amount

of

this can be affected by oneds posture and the



on the body is greater when more force is applied. Activities that require éx@rtion or
muscle effort includee.g., lifting, transferring, repositioning, pushing, pullingnd gripping a

tool (6). When ag activity is performed again and again, it is called a repetitive movement.
However, an awkward posturee(,d i r ect ed away from the bodyods
periods of time can also be of risk to the woretee tocontinual stress placech@mne body part
without sufficient muscle recovery time. The closer the joint is to its end of range of motion, the
greater the stress placed on the soft tissues of the joint, such as muscles, nerves, an@}endons
Secondary risk factors may be contact pressure, vibration, gloves, or temperature. When two or
more risk factors combine in one job, the chance of injury is increassdswehen there is only

one risk facto(6). Many articles have discussed in detail the causes o{8455).
1.1.3Summary

Survival analysis is a tim-anevent analysisin this study, survival analysis regards the time
to repeated MSInjury. Multiplicative and additive hazards models will be compared, and their

goodness of fit will be agssed.



1.2 Study Objectives and Rationale

1.21 Study Objectives
The objectives of this thesis are

(i) To demonstratéhe performance of the multiplicative model (Cox hazards model) and
the additive hazards model (;Aalends model

(i) To apply the multiplicative and additive hazards models to the transfer, lifting and
repositionirg (TLR) injury prevention study and assess the models goodness of fit.

1.2.2 Rationale of Study

In survival analysis, the Cox proportional hazardsesgion(17) model is used widely. The Cox
proportional hazards regression mogEr) is one of the multiplicative models, which is also

known as the Cox model, Cox proportional hazards model, Cox fudtige hazards model,

Cox hazards model, a@ox hazards regression model. In this model, the effect of the covariates

acts multiplicatively on some unknown baseline hazard. The Cox models assume that the risk
coefficients are unknown constants whose @afloes not change over timié.the baseline

hazard has a particular parametric distribution, then it turns into a parametric kviheel.the
proportionality assumption in the Cox model is not satisfied, this model can lead to potentially
biased estimateand conclusions. When the proportionality assumption is violated in the Cox
model, an alternative (additive hazards) model can be used, which assumes that the covariates act

in an additive manner on an unknown baseline hazard. Inthb&s two additive hazards

model s, Aa(l&aarods Lmord ed& YLS-2lyhdve beerocdreitered, whiahe
sometimes called ktheAdlkaeddos i medenbdet 86. unkno\
allowed to be functions of time so that the effect of covariates may vary over time. In Lin &
Yingbébs model , the unknown risk coefficients u
covariate effect Theseadditive models are not used widebue toa lack of availability of

statistical software to estimate and test t he



Few studies have been published comparing the multiplicative hazards model and the additive
hazards model; one rexctly compared these models in regard to pediatric firearm inj(#8s
Inthisthesis t hree models (the Cox hazards model, /
Yingds additive haz arahdsappisd ddata jromwhe krdnsfel &ftingc o mp a r
and repositioning injury preventistudy. We will also examine the goodneddit analysis of

the models.



2. Literature Review

2.1 Review of MSI Research

Musculoskeletal injuries (MSIs) at work result in considerable personal and societal burdens
(23). The burden of MSIs is continuously high worldwide. Approximatedgodof all the
occupational and workelated diseases has been due to M85 24) One study showed that,

for occupationalexposure, the predominant portion of disease burden is due to ergonomic
stressors. It has been estimated that 37% of workers in the healthcare services have lower back
pain (15). A broad review of back pain prevalence studies reported a similar pattern of
prevalence in several countries, such as the Netlux1§47%), Sweden (64%), and Greece
(75%). However, there were some differences in measurement tools, back pain definitions, and
occupational groups included in these stu@®s. Another study in Great Brita indicated that

59% of nurses had MSI symptoms as well as high injury rates, while other studies indicated that

46% had lower back pain with no differences between healthcare occuatezs.

In North America t he Nati onal l nstitute for Occupatio
Occupational Research Agenda (NORA) indicates that MSIs are among the most costly
healthcare problems facing society tod@®). NIOSH research demonstrates that significant
occupational ri sks for MSI exist and are the
costs in the healthcare setti(@®0, 31) Direct patient care workers have a fundamental role in
healttcare. They provide basic patient care, assist patients with their daily activities, and provide
emotional support to patients. In nursing honasut80-90% of care was provided by direct

care workerq32, 33) Nursing aides, orderlies, and attendants have the highest rate of MSI



injuries and illness (465 and49 per 10,000 in the years 2007 and 2008, respecti(@d))
Among nurses, back injuries were associated with high physical loads involved in manual lifting
and transferring of patien{85-37); thus, a major cause of MSIs was due to patient handling
activities(38-43). Indeed, a study by the Duke Health and Safety Surveillance System (DHSSS)
indicated that one third of all MSIs resulted from patient handittgyities(44). The same study
reported thatripatient nurses, nursing aides, and radiology technicians were the major groups

that incurred MSIg44).

One study of workelated injury among direct patient care occupations in British Columbia
showed that MSIs constituted the highest proportion of total injuries in all occup&tinsn

that study, the occupations considered were registered nurses (RNgediceractical nurses
(LPN), and care aides (CA) in three healthcare settings &cute care, nursing homes and
community care). A study of ambulatory physician careM&D in Canada showed that person
visit rates for MSD varied by province, were highamong older patients and were higher for

women tharfor men(46).

2.2 Review of Methodology on Survival Analysis

Survival analysis is used to study how the survival experience of a group of patients depends on
the values of explanatory variables. In the analysis, the values of explanatory variablbsdra
recorded for each patient at the time of origin or are-tiegendent. For that reason, the hazards
regression model is used in survival analy$ls Two broad reasons for modeling survival data

are: (i) to determine which combination of potential explanatory variables affects the form of the

hazard function and (ii) to o&in an estimate of the hazard function itself for an individual. The



most popular model in survival analysis is the proportional hazard model, which was proposed

by Cox and is known as the Cox hazards regression model.

The Cox hazards regression modebige of the multiplicative hazards models and is the most
widely used model in the field of Biostatistics. This Cox model has been used for several cases
of musculoskeletal injuries. Crook et al. completed a study to determine specific clinical and
behavioal factors that prognostically influence time to return to work following a
musculoskeletal wokkelated injury (47); they used the Cox model for analysis for time
dependent covariates. Another retrospective cohort study was conducted, wherein a cohort of
3,769 healthcare workers in an acute care hospital in British Columbia, Canada, was considered
(48). However, they used the Poisson model to study the relationship betweeorgankzation

factors and the risk of lowdyody musculoskeletal injury among healthcare workers. The Cox
regression model was also used teestigate the association between woglated risk factors

and sickness leve(d9).

Estimation of the Cox17) model 5 based on the partial likelihood approach. The Cox model has

the advantage of simple interpretation of the results and well established computer programs to
conduct the parameter and variance estimations. However, there are some weaknesses in the Cox
moded. First, the proportionality assumptions may not be satisfied. Notably, the Cox model has
been used without proper checks model goodness of fif{50). Second, the influences of
covariate changes over time are notygasassessThird, depending on (i) the modifications in

the number of covariates modeled and (ii) the precision of their measuremgmibeionality

assumption is vulnerable. The proportionality assumption might not be satisfied if the covariates



are deleted from a model or measured with a different level of pre¢sio®2) The Cox model
is thus different from the ordinary linear models of statisdies tothe lack of consistency; this

represers a conceptual weakness and may also have practical impofb2hce

Considering all the above weaknessegh@ Cox model, in 1989, Aalen suggested a simple
linear model(18), which he originally suggested in 19783). Aalen suggested using the
counting process as a tool for formulating many @& #tatistical models encountered in the
analysis of survival data and more general event history (&4a He suggested the
multiplicative intensity model and, in 1980, he introdueechatrix version of the multiplicative
intensity model(53). The multiplicative intensity model is primarily intended for the study of
regression in life testing. This life testing situation along with covariate information hasidee
only the object of a number of studies, mostly paramstridies but also a nhonparametric/semi
parametric study by Cofd7). The model suggested by Aalen was not meant as a competitor to
the others but as a supplementary approach to provide more detailed infori®aYidxs a non
parametric appr 0a cdnetodssesspossibie chamgesanlthe mfluéncewfthe
covariates over time. It is ngrarametric in the sense that no assumption would be made about
the functional form. Also, this intensity function will naturally be restricted by the fact that each
commpnent of intensity must be neregative. In 1984, Buckley suggested the additive and
multiplicative models for relative survival rat€S5). This relative survival rate concept was
introduced byBerkson(56). The relative or corrected survival rate for a group of patients is the
ratio of an observed survival rate to expected rate for the group for demographically similar
individuals in a reference population. |l n his

models by using maximum likelihood estimates and related statistics for ¢abretccording



to that study, the choice of the models for the analysis was important. However, with smaller

sample sizes and varying disease effects, the distinction would be less clear.

The appl i cat iodelnhasobéen deactibed by sevenal autiorss9), and further
development has been recommended by otf&€¥62). Aalen suggested that the new additive

model may be usefuh the medical field(18). Aal ends model speci fies
depends on covariates in a linear way. In that article, the additive model was discussed in a
broader contex and the estimators were presented in a less technical manner. The estimation
procedure for Aalends model was determined by
mathematically defined. The main focus was the cumulative regression plots,théstepe of

the plots at any given time should give information on the influence of the covariate at that

moment. Also, a test procedure and goodiodgg plots were suggested.

Later, Aalen suggested further development of a nonparametric lineassiegranodel in
survival analysis(63). Three diagnostic methods were studied in his paper: (i) martingale
residuals were introduced for the linear rabtb test the goodness of fit of the model; (i) Aalen
focused on the use of bootstrap replications to judge which features of the cumulative regression
plots were likely to reflect real phenomena and not merely random variation. There were no
existing famal tests for judging the significance of the cumulative regression plots. Thus, for
judging which features were consistent throughout the curves and to reflect the real features,
several bootstrap cumulative regression plots were used. Finally, (i@udecumulative plots

gave the information in an indirect way, the slopes of the curgeded to be interpreted; this

1C



was not straighforward. Thus, Aalen suggested the kernel smoothing procedure, which was

generally applied in probability density esttioa.

Although the various additive hazards models have been highly advocated and used successfully
by numerous authoid 8, 53, 55, 6469), no satisfactory seaparametric methods of estimation

have been develodeLin and Ying observed that this lack of progress is attributed to the fact
that the partial likelihood approach cannot be used directly to eliminate the baseline hazard in
estimating the interceR0). They have developed simple procedures with high efficiencies for
making inferences about the regression parameters under the additive hazards model with an
unspecified baseline hazards function. In their study, a simple gErametric estimating
function for the intercept was constructed, which imitated the martingale feature of the partial
likelihood score function for baseline hazards. Still, there were some proinieiret study in

relation to generalizing estimating function to the case of multivariate failure time data as well as
methods for checking the adequacy of the model. Ying and Lin further extended this model in
two subsequent pap€iE9, 20) They siggested the sempiarametric analysis of general additive
multiplicative hazard models for the counting procgX3®) and the additive hazards regression

models for survival data but compared these with the frailty nddel

In consideration of this theoretical point of view, several studies have been done to fit both the
Aalen and thd_-Y additive hazards models. Martinussen & Scheike studied a flexible additive
multiplicative hazard model, which was based oa IAe n 6 s and (CQ.XThey mode
considered a new addithraultiplicative hazard model that consists of two components: additive

covariates from Aanlde nmwsl tai dvdairtiiavtee mncoodvealr i at e s

11



model. Martinussen & Scheike applied their model tordad tcs data and discovered that the

additive multiplicative model for their study showed lower mortality than the additive model.

The Cox propoit o n a | hazards model and Aalends addit:i
severe breast cancer study in 2qQ@4). In that study, these two models providde same

results for some time periods, but for other time periods, they provided different results. Both the
models indicated that the same covariates were significant for the model and were selected. The
estimates of covariate effects were easily inetgu, but the assumption of proportionality was
necessary to make that estimate valid. For the additive model, plots of the cumulative regression
function provided an appealing explanation for how the hazards profiles were distributed. Those
cumulative regession functions did not easily transform into a single numerical estimate of the
covariate effect. Comparison of the additive and multiplicative hazards models was performed
using simulation in the breast cancer st{dg). Accarding to that simulation, the two models

should not be viewed as alternative to each other because they provide different kinds of
information. They suggested that they may be used together to further the understanding of the
data. Bhattacharya and Kleth® wed t hat Aalends approach | ead
the crude estimate of the hazards rate of each group as compared to a baselifé3yrdup

their study, they indicated that this weighting leads to inconsistent tests in the sense that the test
statistic depends on which group someone picks asb#seline group. They showed that
consistent tests were obtained by using common weight functions for all comparisons. If the
weight functions are asymptotically equal under the null hypothesis, then the tests will lead to

asymptotically equivalent resaltegardless of the choice of the baseline group.

12



3. Methods and Materials

3.1 Basic Concepts

The initial step of analyzing survival data is to present numerical or graphical summaries of the
survival times of individuals in a particular group. Howeveandard statistical procedures in

data analysis cannot be used in these analyses because the data are generally not symmetrically
distributed (mainly when the survival time is censored). Generally, if someone constructs a
histogram from the survival dati,will tend to be positively skewed. As a result, an assumption

of normality does not satisfy because survival times are censored.

Censoring The survival time of an individual is said to be censored when thea&nt of
interest has not been observidte patient is lost to follovap, or the individual withdraws from
the study(1, 2). Suppose that a patient who entered a study attyjmies at timep+t. Here,t is
unknown because the patient may still be alive or lost to fellpwHowever, fithe patient was
last known to be alive at timg+c, then the timec is called a censored survival time. The

censoring indicatoi is
u=1, if event
0, if censored.

The censoring is the key analytical problem in survival analydiere are three types of

censoring:

Right censoring If the censoring occurs after the individual has been entered into a study, that
is, to theright of the last known survival time, then this is called right censoring. The right

censored survival time is less than the actual, but unknown, survival time.

Non-parametric model: A model which does not require any specific assumptions about the
underying distribution of the survival times. This is also called the distribution free method.
Common norparametric methods for estimating the survival functions are-thbie (LT),
KaplanMeier (KM) and NelsorAal ends ( NA) . For comgfaurvivahg t wo
times, norparametric proceduresich asthe logrank test and the Wilcoxon test, are generally

used.

13



Semiparametric model: A model that has the components of both parametric and non
parametric models is called a separametric model. A comonly used semparametric model
is the multiplicative hazards model due to C7), which is oftencalled the proportional

hazards model.

Parametric modet A model in which a specific probability distribution is assumed for the
survival times is known as a parametric model. These models are chosen not only because of
their popularity among researchevbo analyze survival data but also because they offer insight
into the nature of the various parameters and func{@psSome of the important parametric
models are: Exponential, Weibull, Gamma, bmmyymal, Loglogistic, Gompertz, Inverse

Gaussian, Pareto, and Generalized Gamma distributions.

Notations and Definitions
We will use the following notations throughout this thesis:

T: Here, T is a nonnegative random variable and is the time until some specific event occurs.
This event may hee.g.,death, the appearance of a tumor, the development of some d@ease,

recurrenceof a disease.
t: Some values of time (nemegative values) of random variafle

In general, survival distribution is described by three functions: survivor or survival function,
cumulative distribution function and hazard funct{®). Survival data are summarized through

estimates of the survivor function and hazard functign

3.1.1 Survival Function and Hazard Function

Cumulative distribution function (c.d.f.): Suppose the ralom variableT has a probability
distribution with underlying probability density function (p.dfff). Then the c.d.f. of a variable
T, denoted by(t), is a function that tells us the probability that the variable will be less than or

equal to any valet that we choose. Thus,

F(t) = P(T )C‘)ctﬁt (u)du, (3.1
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where

= [im P(t¢Td:t+dt)_ (32)

dt 0

Survival function (S(t)): The main function used to describe tioeevent phenomena is the
survival function. The survival function is dedid as the probability that an individual survives
to timet, which is denoted b$(t). Thus,

S(t) = RF(@. Nde thais(t)isa monotone decreasing function, &(0)=1, S ( B:0.)

Hazard function (h(t)): The hazard functiom(t), is defined a the risk or hazard of death at
somet and is obtained from the probability that an individual dies at tjrgenditional on that

person having survived up to that time. Thus,

. PtecT<t+dtT2t
n®= [jm T, (33)

dt 0

This function is also called ¢hhazard rate, instantaneous death rate, the intensity rate, or the

force of mortality, andh(t) is a nonnegative functia (i.e.,h(t) O @nyl has no upper bound

The relationship of f(t), S(t) and h(t): The relationship betwedf(t), F(t), S(t), h(t)andH(t) can

be expressed as follows):

_ dF{) _ dSY)
= = (3.4)
_fo__d
h(t) = 0 ST log S(t) (3.5)
H(®) = - log S(1 (3.6)
&t q
S() = exd- H®)} =exp - fu)dug (3.7)
i o y
f(t) = h(t) expf: Fh(u)du. (3.8)
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Mathematical Notation

In this section, the following notations will be used for the multiplicative hazards model and the
additive hazards models:

Let us supposthat:
X =time to some event at tinte
T, = the time of study for thi" patientj =1, ., 8, &
U, = the event indicator for th& patient (s =1 if the event has occurred and
b =0 if thelife time is rightcensored), and
Zj(t) = (Za(t), Zo(t), & € ,p)0 | s t hgcovaratestoorisk faxtors for the
j™ individual at timet, which may affect the survival distribution of X.

The Zy(t), k=1,2, .. , pmay be timedependentovariatesvhose valeschange over time, such
as curraet disease statusnd serial blood pressure measurements. They also may be constant

values known at time 0, such as sex, treatment group,aadmitial disease state.

b= (1, b é é @), 8 alparameter vectorf Z.
Define for thg™ individual:

Yi(t) =1, ifindividualj is under observation (at risk) at tirhe

0, if individualj is not under observation (not at risk) at time
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3.2 Estimate of Survival andHazard Function
3.2.1 Nonparametric Estimate

The most widely used nonparametric methods for estimating and comparing survival distribution

are the KaplatMeier (KM) productlimit (PL) estimates and the ld&ble (LT) or actuarial
methods(56). The KM method is most suitable for smaller data sets with precisely measured
event times, and the LT method may be better suited fge ldata set§74). An alternative

estimate of the survivor function is the Nelstra | ends ( NA) e ssed om éhe e w h
individual events time. The KM estimate can be regarded as an approximation of the NA
estimate.For the normparametric estimate of the survival and hazard function, in this section,

only the KaplarMeier method will be discussed.

3.2.1.1 KaplanMeier Method

The earliest statistical method devised to study human mortality was the LT eg&f)atehich

is also known & the actuarial estimate of survival function. However, modern methods like the
KM reduced its importanc€r5). The KM estimator of the survival function is usually used to
analyze individual data. Suppose that the events ocddrdadtinct timest;<t,<é . s ,tand that

at timet;, there aredi number ofevents. LetY; be the number of individuals who aaé risk at

time t;. Note thaty; is a count of the number of individuals with a time on study of more

(i.e., the number of individuals who are alivet;ar experience the event of interestiatThen,

the KM estimator is defined as
70 .
S(t) =1lift<t

]

L if Ot (3.9)
u

= Ot1¢t

DXP(D/

<|e

This estimator is a step function with jumps at the observed event times. The size of these jumps
depends not only on the number of events observed at eact bintealso on the pattern of the

censored observations priwrt;.
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The KM estimator provides an efficient means of estimating the survival function for right
censored data. It can also be used to estimate the cumulative hazard t(igtonIn[S(t)].

When the survival times of two or more groups of patientdeaieg compared, the legnk test

and the Wilcoxon test can be ugagl

3.2.2 Hazards Model

The hazards function is a useful way of describing the probability distribution for the time of
event occurrence. Each hazards function has a corresponding probability distribution. However,
the hazards function can be extremely complda@ne of the simplest hazards models(t3 =

& which is constant over time. This implies exponential distribution for the time until an event

occurs (or the time between events).

Suppose we have thixed-covariateZjy - Zj = (Zj1, é ¢p) .0rlen, the exponential hazards

model can be wrigén as

h(t) =exp{bo+biZi+ BZo+ & é é H,Z,). (3.10)

This method can be useful in the analysis of a single sample of survival data or in the comparison
of two or more groups of survival times. However, in most medical studies, subjects in th
groups have some additional characteristics that may affect their outcome. For example, subjects
may have associated demographic variables, such as age, gendegceaoimic status, or
education; behavioral variables, such as dietary habits, smoldtayyhiphysical activity level,

or alcohol consumption; or physiological variables, such as blood pressure, blood glucose levels,
hemoglobin levels, or heart rat€Ehesevariables may be used as covariaties.,(explanatory
variables, confounders, risk cirs, or independent variablesdp explain the response
(dependent) variable. After adjusting for those potential explanatory variables, the comparison of
survival times between groups should be less biased and more precise than a simple comparison.
Another important problem is to predict the distribution of the time to some event from a set of
explanatory variables. The interest is in predicting the risk factors for the event of i(grést

explore the relationship between the survival experience of a patient and explanatory variables,
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the models for survival data userkdi) the multiplicative hazards model and (ii) the additive
hazards model.

3.2.2.1 Multiplicative Hazards Model

The Cox hazards model is one of the most commonly used multiplicative hazards models. This
model is also known as th€ox model, Cox propadnal hazards model, PH model, Cox
multiplicative hazards model, proportional hazards model, Cox hazards model, or the hazards
regression modelfhe Cox model is based on the assumption of proportional hazards, that is, the
hazard ratio is constant over &mi.e., the hazard for one individual is proportional to the hazard
for any other individual, where the proportionality constant is independent of time. The Cox
proportional hazard model is

h(tlz)=ho(t)c(d %, (3.11)

where ho(t) is the baseline hazard, amgb X is a function of the values of the vector of

explanatory variables.

The Cox model is the most widely used survival model in the health sciences, but it is not the
only model awilable. There is a class of survival models, called parametric models, in which the
distribution of the outcome (i.e., the time to an event) is specified in terms of unknown
parameterg2). If we can assume a particular probability distribution for the data, inference

based on such an assumption will be more precise.

We have been paying attention to the multiplicative regression rfardible survival data based

on the Cox hazards model. In the Cox model, the effect of the covariates was to act
multiplicatively on some unknown baseline hazards rate. Covariates that do not act on the
baseline hazards rate in this fashion were modekbereby the inclusion of a timgependent
covariate or by stratification. In a similar manner, the fully parametric models can be

multiplicative (76). We know that the multiplicative models are very useful in practice because
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either the estimated coefficients themselves or simple functions of them can be used to provide
estimats of hazard ratios. In addition, statistical software is readily available, and it is easy to
use it to fit models, check model assumptions, and assess model fit.

3.2.2.1.1 Cox Proportional Hazards Model
The Cox proportional hazards model is
h(t|2) = ho(t)c(bZ), (312

wherehg(t) is an arbitrary baseline hazards rate, afdd) & a known functionZ=(Z,, &y),is Z
the covariate vector arfi- ( 4, b ép)ﬁis thebcoefficient vector df.

The Cox hazards model is also called a seammetric model because a parametric form is
assumed only for the covariate effect. The baseline hazards rate is unspecified. Béfuse

must be positive, a common model fob ] is

c X=expp I= ex% bz g (3.13
(;k =1 -
which implies that
h(t|Z) = ho(t) exp(bZ) = hy(t) ex% bz g (3.19

Ck=L -

The Cox hazards model is a proportional hazards model because if we look at two individuals

with covariate valueZ andZ’, the ratio of their hazard rates is

8,0 0
ho( ) Xﬁ a bkz U ) R
:it//zz*) I 0 Y ﬁeap b.(Zc- Z)u, (3.15
t/z) hy (1) exnea b.Z. 1 U k= y
I k=1 y

which is a constant. So the hazards rates are proportional. This is called the relative risk or
hazards ratio of an individual with risk factdrhaving the event as compared to an individual

with risk factorZ".
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To fit the Cox hazards model, we need to estimate the unknown parafetefiiciens, which

can be estimated using the maximum likelihood method. According to the maximum likelihood
method, the likelihood that the sample data has been obtained first, which is the joint probability
of the observed data, is regarded as a fonaif the unknown parameters in the assumed model.
For the Cox hazards model, the maximum likelihood function is a function of the observed
sur vi val t dparensteris the ldeartcbneonént of the model. Estimates bislaze

then those valsethat are the most likely on the basis of the observed data. These maximum
likelihood estimates are therefore the values that maximize the likelihood function. From a
computational point of view, it is more convenient to maximize the logarithm of tHéndike
function. Furthermore, approximations to the variance of maximum likelihood estimates can be

obtained from the second derivatives of thellkglihood function(1).

As indicated earlier, suppose the data is based on a sample of size n consisting of tfig triple (
Z),] =1, 2Consiler that the censoring is norformative in that, gived;, the event and
censoring time for th§" patient are independent, and there are no ties between the event times.
Lett;i<t,< é é . p te denote the order event times ahgk be thek” covariate associated with

the individual whose failure time i§. The set of individuals who are at risk at titnaredenoted

by R(t), giventhe set of all individuals who are still under study and uncensored at a time just

prior tot;.

Then, the relevant likelihood function for the Cox hasamodel is

e.p [}
L expad bZiy
Lb)= O ek; : u _ (3.16)
" 8 exd bZ,
&1 u

ilR()

The log likelihood of the above likelihoodl (b) = InL(b), can then be written as
D

P D e, a.p 0%
LLB)=a a b, - alnéa exza 6,2, 8] (317)
~u

i=1 k=1 i=1 @i R{) Ck=1
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The partial ma x i mu m |-pardareetei anedoand byemsxtimizimggl6), s o f t
equivalently, 8.17). The score equations are found by taking partial derivative8.Dbf)(with
respect to théd as follows:

da_L(b) ,
Let Ub )= k=1, 2, .o .
et U(b ) b é p
then,
. R
b b Ja Z,expla b.Z;]
Ub F & Zo- &~ ) pk:l (318
= = a expld b.Z;]

il R() k=1

The partial maximum likelihood estimates are found by solving the gehohlinear equations
Ukb )O%= 1, 2 .,Thigcan be gone numerically by ngia NewtorRaphson techniqug).

3.2.2.2 Additive Hazards Model

There may be times when a measure of the additive effect of a covariate is preferred over a
relative measure. Several different forms of additive models are possible. The simple additive

hazards model given by Cox and OaK6é9) is
h(t)2) = ho(t) + 2 ( (3.19

wherel ( 0 Jand0 Z) is constrained so that the righénd side is nonegative, andho(t) is the

baseline hazard. Two additive models have been considered with great att@ndione n 6 s
additive model(18)and Li n anY¥ Models(ald s Aa@Lendés model assu
covariates act in an additive manner on an unknowelibashazards rate. The unknown risk
coefficients in Aalendés model are allowed to
may vary over time. The leastjuares approach is used to estimate the cumulative regression
functions and the standaetrors of these functiongt). In the L-Y model, the timevarying

regts si on coefficients in Aalendés nmYordodd, thar e r e

estimating equation is obtained from the score function to estimate the @pdels attractive
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to study and utilize these additive hazards models for several reasons. The following two main
justifications were described in great detay 64, 67) First, the risk difference is
complementary to and, from the public health point of view, more important than the risk ratio in
describing the association between the risk factor and disease occurrence. Second, biological and
empirical evidence suggests that the additive hazards ritsdedrtain types of data better than

the proportional hazards mod@dl9). In the next sectioriwo additive hazards models will be
reviewed and compared. Furthermore, the models will be applied to the TLR injuries

interventiondata on musculoskeletal injury among healthcare workers.

3.2.2.2.1 Aalend6és Additive Hazards Model

Aalen developed a moreegeral additive model. In his model, he discussed the issues of
estimation, testing and assessment of mod€lL@f 11) The covariates perform in an additive
manner on an unknown baseline hazards rate. The unknown risk coefficients in the model are the

function of time so that the values of the regression coefficiestallowed to fluctuate over

time.
Aal ends hazard model or tjhiedividual atdiret givenZ@)lis hazar
defined as

htZi) = hy(®) + A b BZ, 1), (3.20)
k=1

wherez;(t) = Zu( t ) , p(t)ds.ap-ve@orof , possiblytime-dependent covariates.

Thus, the hazard at any time is a sum of a baseline hazard and a linear combination of the
covariate values. Aal ends model measured the
regression functions may vawith time, their analyses may reveal changes in the influence of

the covariates over time, which is one of the
iS nonparametric in the sense that no assumption is made about the functional forms of the

regression functions.
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However, it is difficult to estimatBy(t) directly in the same way as the estimation of the hazards
rate. The estimation of the risk coefficients is based on adgastres techniqu@s8), whereas
the estimation in the proportional hazards model is based on a partial likelihood or conditional

likelihood. We estimate theumulative risk functiorB(t), defined as
t
B®)=fp(Wdu, k=0, 1, €., (3.21)
0

To estimate th@&(t), a leastsquares technique has been used by Aalen. To obtain the estimates,
let us define am by (p+1) design maix, X(t), as follows: For thé" row of X(t), we setX;(t) =
Yi(t)(1,Zj(t)). That is,Xi(t) = Yi(t)(1, Za( t ) , jp(t), if the i™individual is a member of the risk

set at timet (event has not happened, and the individual is not censored).iff imgividual is

not in the risk set at timg i.e., the event of interest has already occurred, or the individual has
been censored, then tRgt) contains afg+1) vector of zeroes.

Suppose that(t) be then by 1 vector with thé™ element equal to i subjecti dies at timet and

0 otherwise. Then, the leasfjuares estimate of the vecBit) is

B(t) = & [XiM)X (T Xim)1 ) (322
The variancecovariance matrix odB(t)by Aal en 6 s, i S

%% v i

VBT = & X)X M X M) XWX XY, (3.23)

Tot

wherel®(t) is ann by n diagonal matrix with diagonal elements equal (t). The estimatoB(t)

only exists up to timet, which is the smallest time at whicki(T,) X(T,) becomes singular.

We know from equation3(21), thatthe estimatorsl?;: (t) estimate the integral of the regression

functionby(t). A crude estimate of the regression functions can be found by examining the slope

of the fittedé:(t)s. Better estimates of the regression function can be found by using kernel

smoothing techniques, which we do not pursue (re
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One benefit of fitting Aal en 0 sengdfdheefieat @ a mo d e |
covariate over time, rather than to provide an additive covaagjtested survivorship function.

This graphical representation is the plot of the estimaB(Ofversust along with the upper and
lower endpoints of a poiwise confidence interval. For the 95% confidence interval, Aalen uses
the plot of

Be(t)° .96 VB, (). (3.24)

3.2.2.2.2 Li ) Additve Hezardsgviddel ( L

We know from Aalends additive heaotanrindigidugno d e |
given a set of covariateandthat the regression coefficients are the function of .tinie and

Ying proposed an alternative additive hazards regression nf@ée&l). The LY additive
hazardsmodel for the conditional hazards rate fBindividual with covariate vectaf(t) is

P
h(tZ®)=h(t) +a b Z; (1) - (3.25)
k=1
When all the covariate values are fixed at time 0, it is easy to estimatgtassien coefficient,
Bk, k =1, .I2fact, as.oppospd to the estimates in the Cox model, an explicit formula is
available for the estimates and their varian

estimate the regression coefficients. Wi fecus only on the case where all the covariates are
fixed at time (19, 21)

To estimate the coefficiefk, we have to construct the vecﬁ(t) and definep by p matrix A, p

by 1 vectorB, andp by p matrix C in terms of Z(t). Z(t)is the average value of the covariates at

timet. i.e.,

azvo
Z@t) ="t ——. (3.26)
al Y.

Thep by p matrix A is given by
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A=440-1.)z -z - 2m) (327

=1 j=1

the p-vectorB is given by

B°=4 d(z - Z(T), (3.28)

i=1

and thep by p matrix C is given by
-adlz-zm)z - zm)
C—aOi'Zi Z(Tj i (Tj : (3.29)
i=1

Then, the estimate db= + b D épis b

70 a

b=A"B° (3.30)
and the estimate of variance gf is

V'=V(b)=ATcA. (3.31)

3.3. Model Goodness of Fit

In the last section, methods for analyzing the seanametric Cox hazards model and the
additive hazards models are described. In this section, the focus is on estimating and testing
effects assuming thahe model is correctly chosen. In fact, the use of diagnostic procedures for
model checking is an essential part of the modeling process. A series of regression diagnostics
procedures will be performed to assess the adequacy of the Cox hazards modeh bbasielial

plots and a couple of methods for additive hazards models.

3.3.1 Diagnosis of Cox Hazards Model
We are generally interested in examining four aspects of the hazards(#jodel

First, for a given covariate, we would like to see the best functional form by which to explain the
influence of the covariate on surviyadjusting for other covariates. Second, we wish to check

the adequacy of the proportional hazards assumption. If the assumption is not valid, then one
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may be appreciably misled by the results of the analyses. While we have looked at the use of a
time-dependent covariate to check this assumption, a graphical check may provide some
additional insight into any departure from proportionality. Third, we wish to check its accuracy
for predicting the survival of a given subject. Here, we are interested intgatio had the

events either too early or too late as compared to what the fitted model predicts. This will tell us
which patients are potential outliers and, perhaps, should be excluded from the analysis. The
final and fourth aspect of the model to beraxged is the influence or leverage each subjects has

on the model fit. This will also provide some information on possible outliers.

Regarding the availability afomputersoftware, the adequacy of the Cox model can be checked
in several ways. Many modehecking procedures are based on quantities known as residuals. In
general, for assessing the fit of a Cox model, diagnosis would occur via the following residual
plots: CoxSnell residuals, martingale residuals, Arjas plot, deviance residuals, and partial
residuals or Score residuals. The €nell residuals are used widely in the analysis of survival
data (77). These residuals are useful for checking the overall fit of the final model. The
martingale residual is useful for determining the functional form of a covariate to be included in
a proportional hazards regression modéB, 79) To check the proportional hazards
assumptions, we can use the Score residuals, Arjas plot, andopk#d on estimates of the
cumulative hazards from a stratified model. The deviance residual is used for examining the
accuracy of the model for each individual. We estimate the difference between an estimate of
based on a full sample and one based on a sample with the observation doettexthe
problem of determining leverage points. Approaches to determining leverage points are based on

the partial residual or score residual.

3.3.1.1 CoxSnell Residuals

The most widely used diagnostic procedure in survival data analysis is tHeneétxesidual, so

called because it is a particular example of the general definition of residuals given by Cox and
Snell(77). To check the goodness fit by using this process, the estimated cumulative hazards
rate of the residual has to be péattagainst these residuals. This gives the cumulative hazards

plot of the residuals. If the fitted survival model is satisfactory, then the plot will be a straight
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line with unit slope and zero intercepe., if the Cox model fits the data, then the @bould

follow the 45 line. However a plot that displays a systematic departure from a straight line, or
yields a line that does not have an approximately unit slope or zero intercept, might suggest that
the model needs to be modified in some way. Edemntdy, a logcumulative hazard plot of the

residuals may be used.

3.3.1.2Martingale Residuals

The martingale residual is a slight modification of the Gwmell residua(l, 4), which ras been
defined as follows. Suppose that for jfeindividual in the sample, we have a veckt) of
possible timedependent covariates. L&(t) have a value at time if this individual has
experienced the event of interest and O if the individ@s Yet to experience the event of
interest. LetYj(t) be the indicator that individuglis under study at a time just prior to tirhe

Finally, letb be the vector of regression coefficients dlzlé(t) be the Breslow estimator of the

cumudative baseline hazards rate. Then, the martingale residual is defined as
% ° : %, . . )
M, =N (a)- i, etz OlH 1), j=1 ., (3.32)
0

When the data is rightensored, and all the covariates are fixed at the start of the study, then the

martingale residuakduces to

=d-r,j[=1, én, , (3.33)

DO

% % a.p
Mj :a’j - Ho(rj)exréﬂilzjkbk

N O
wherer; is the CoxSnell residuabf thej™ individual This residual has the prope&yM? =0.
j=1

7V . .
Also, for large samples, th®; s are uncorrelatesamples from a population with a zero mean.

The martingale residuals can be interpreted as the difference over time of the observed number
of events minus the expected number of events under the assumed Cox model; that is, the

martingale residuals are an estimate of the excess number of events seen in the data but not
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predicted by the model. In this study, these residuals will be used to examine the best functional
form for a given covariate using an assumed Cox model for the regaavariates. Suppose
that the covariate vectdaf is partitioned into a vectoZ', for which we know the proper
functional form of the Cox model, and a single covarigtdor which we are unsure of what
functional form ofZ; to use. We assume thZi is independent of". Let f(Z1) be the best

function ofZ; to explain its effect on survival. Then,

H(1Z",Z1) = H, () exp’ Z" ) explf (Z))] (3.34)

is the optimal Cox model.

To find f(Z1), we fit a Cox model to the data basedZzrard compute the martingale residuals,
IVI“J’ j = 1These mesiduals are plotted against the valu@,dbr the | observation. A
smoothed fit of the scatter diagram is used. The smoditihed curve gives an indication of the
functionf. If the plot is linear, then no transformation&fis needed. If there appears to be a
threshold, then a discretized version of the covariate is indi¢djet the plot is neither linear

nor threshold, then we should use a transform, such as log, squalegd.Z

Note that the martingale residuals are based on théncthe process
t
M, () =N, (t)- 7Y, W) exd'Z, (W)]dHo(u)
0

is a martingale when the proportional hazards model is correctly specified. The martingale
residuals are obtained by substituting the estimateb ahd Ho(t) in this expression and

evaluating the estimated martingale attime = D.

A graphical plot of these residuals can be obtained by plotting martingale residuals versus
survival time, index, the rank order of the survival times or explanatorables. These
residuals highlight individuals who, on the basis of the assumed model, have died too soon or
lived too long. Large negative residuals will correspond to individuals who have a long survival
time but covariate values that suggest they shbane died earlier. On the other hand, a residual

close to unity, the upper limit of a martingale residual, will be obtained when an individual has
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an unexpectedly short survival time. An index plot of the martingale residuals will highlight
individuals whae survival time is not well fitted by the model. Such observations may be termed
outliers. The data from individuals for whom the residual is unusually large in absolute value

will need to be subjected to further scrut{@y.

3.3.1.3 Arjas Plots

To check the proportional hazards assumptamthermethod is use of the Agaplot (50). By

using this plot, one can also check the overall fit of the proportional hazards iEyresslel.

Let us suppose that a Cox model has been fitted with a covariate ¥eofqy variables, and we

wish to check if an additional covariafeshould be included in the model or if the new covariate

has proportional hazards after adjustment fovacate Z'. Let I;i'(t|Z*) be the estimated
cumulative hazards rate for tiB individual in the sample at time If the covariatez; is
continuous, then we have to group the valueshknttasses. At each event time for each level of

Z;, we compute the fAtot al time on test (TOT) o
this time and the observed number of events that have occurred up to this time. That is, at each

event timet;, we compute

TOT(t) =4, ,H{min¢,. T)IZ
and
N (t) =&, &1 (T 61).

If the covariateZ; does not need to be in the model, then, for each lev&l ofie quantityNg(t;)

i TOTy(ti) is a martingale residual, and a plotNyt) versusTOTy(t;)) should be a roughly¢5°
line through the origin. Departuresofn this pattern provide evidence of a lack of fit of the
model(4).

3.3.2 Diagnosis of Additive Hazards Model

There are several methods for testing the goodness of fit for the Cox model. Hdweeaese of

the lack of software availability, the residuals plot for the additive models is linditezl Arjas
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Plot and martingaleesiduals plot were used to assess the adequacy of the fit of the additive
model(22, 71, 72, 80)

3.3.2.1 Arjas Plot

The Arjas Plot simply compares the observed and expected number of events as a function of
time. In this method, the observed number of events is plotted against the expected number of

events for various subgroups of covariate values.

Consider the additive model at timhewhen the covariaté(t) is time-independent. Then, based

on the Klein and Magchberge(4), the estimated cumulative hazard rate is
7 % 2
H (ti2) =H,(t) +a B.(1)Z,
k=1

where é:(t), are the leassquares estimatels,= 0, 1, é. p.

Suppose thalj(t) = 1 at timet if the individualj has been observed &xperience the event of
interest before or at timg and N;(t) = O if the individual has yet to experience the event of

interest (until the event of interest has occurred). If the individual is cendgf@ayill stay atO.

To the check the goodnessfif groups of individuals who might be expected to deviate from

the proposed model were selected. Suppose there are g such groups. In the Arjas plot, we plot the
sum ofN;(t) over theg” group against the values b?f‘(t|Z,-(t)) summel over the group. For each

group at each event time, a point would be produced, and the points are connected. If the model
fits, then this plot should look like a %Bne through the origin for each gro@, 72)

3.3.2.2 Martingale Residuals Plot

The difference betweeN|;(t) (the observed number of events) ahﬁ(ﬂzj(t)) (the expected
number of events under the additive model) for jthéndividual is defined as the martingale
residualq81)

7Y

M) =N,(®)- HtZ, ®],j=1,2 é., n.
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These residuals are defined fa® where,Uis the maximal value dffor which the matrixzZ(t)

is a nonsingular matrix. The sum of these residuals over @servations is zero at any event

time. The martingale residuals plots give a picture of how accumulated hazard compares to
events that occurred over time. The goal of the martingale residuals is to compare these residuals
for a subgroup (suppose for th8 group) within a dataset with different covariate values to find

out if the model is valid for all subgroups. The martingakadual at time for a given group is

the sum of the martingale residuals at tino@er the members of the group. Then, these sums are
plotted against time. If the model fits the data, then the plotted curves should be closgq4o zero
72).

To determine if the martingale residual process is too far from zero for a model to balalecept
we need to compute an estimate of the variance of the martingale residuals feid@dse the

n by q matrix, which has as if&' row a1 in the column of the group in which tff& observation
belongs and 0 in other columnset M{t) be the ector[l\ﬁ:(t), .......... M:(t)]i. The Q-vector

of martingale residuals summed over groups is given by

M (1) =QiMi.

Let D; be then by n matrix of all zeros at an event tintge except for the diagonal elements
corresponding to individuals who d& timet;, where the diagonal element has the vdlukeet

Xi be then by (p+1) matrix whosg™ row is zero if thg™ individual is not at risk at timg and
has the valuél, Z(t) , @(t®)4f the individualj is at risk. Finally, let be then by n identity
matrix. Then the covariance matrix fokeqt) is

CO\[Mres(t)] :éQil - Xi(xiixi)_lxii]Di[l - Xi(xiixi)_lxii]iQ-

t; ot

The confidence interval fdvl.e{t) can be calculated as

M res(t) ° Zl al2 (CO\[M res(t)]):u2 '

A plot of M,{t) against time for various groups with 95% point wise confidenoervats
construct using above equation is used to assess model fit. Both types of plots can be used to

assess the fit of the additive mode. The Arjas plot gives a clearer indication of lack of model fit
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than the martingale residuals plot. However, the mgaie residuals plot, which explicitly
involves time, gives a clear indication of where the problems may be arising from in the fit of the
model.

3.4 Software

SAS version 9.2 was used for most of the analysis in this study. Other software that has been
used in this studywas R, MB/or d and Excel. For Aalenbd6s addit
was obtained from the Statistical Software at the Medical College of Wisc(8&IinA SAS

macro for the LY additive model was obtained from Dr. Xu Zhang in the Department of
Mathematics and Statistics at Gear@tate University22). All of the SAS pogramsusedfor

this thesisare provided in the Appendix.
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3.5 Summary

A brief summary of the multiplicative and additive hazards models is given in 3d&tle

Table 3.5.1: Comparison of multiplicative and additive hazards models

Characteristics Multi plicative model Aal ends additi ve |[L-Yadditive model
Basic model h(t|Z)=ho(t)exp ©1Z1+ ..+ bpZp) | h(t|Z)=ho(t)+ Bi(t)Za(t)+. .+ Be(t)Zjp (1) | h(t|Z)=ho(t)+B1Za(t)+ ..+ BpZp (1)
Covariates Covariates act in a multiplicative | Covariates act in additive manner on g Covariates act in additive

manner on an unknown baseline

hazard rate.

unknown baseline hazard rate.

manner on an unknown baselin

hazard rate.

Coefficients b)

Coefficient is constant, but it may

be timedependent.

b(t) might be dependent on tinhe

Coefficientb is constant.

Interpretation of i)

Coxb6s model e a
risk or hazard ratio due to the
effect of a covariate in relative

terms.

Aal

risk due to the effect of a covariate in

ends model me a

absolute terms.

The LY model measures the
excess risk due to the effect of

covariate in relativéerm.

Software

Algorithms for the estimation df
in the Cox model are available in

many statistical packages. The

Algorithms for the estimation df are
not readily available in SAS. A SAS

macro to fit Aal e

Algorithms for the estimation of]
b are not readily available in
SAS, SPlus or R. A SAS macrg
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procedure PHREG in SAS and
Coxph in SPlus provides
estimates ob, its standard error
and the Wald, score and likelihog
ratio test of the global hypothesis
of no covariate effects. Also,
STATA and R are used to estima
the effects.

available irvww.mcw.edu These days,

R software can be usedhich has a
function named aareggf i t t he

model.

is available at Georgia State

University.

Goodnes®f fit

There are several methods to
check the adguacy of the model,
such as Co8nell, Martingale,
Deviance Schoenfeld, Score

residuals Arjas Plot etc

For checking the adequacy of the mog
Arjas Plot and Martingale plots are

available, but not in SAS.

For checking the adequacy,
Arjas plots and Mdingale plots

used.

* Martingale residual and Arjas plot has been used in this study.
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4. Application to Injury Data

To compare the performance of the Cox hazards model and the additive hazards models, the
TLR injury prevention study was used inghihesis. The TLR data have been collected by
Timothy R. Black for his M.Sc. thes{83) and further refined for thihesis The data have been
originally collected from a retrospective, ppest intervention design utilizing a non
randomized, historical control group. In brief, these administrative data were obtained from the
OH&S databases of the Saskatoon Health Regio( SHR) and the Regina
Region (RQHR). In this study, SHR was considered as an intervention group, and RQHR was
considered as a control group because no training regarding patient handling had been provided.
Three hospitals from each regiovere considered. The hospitals in the SHR were: Royal
University Hospital (RUH), Saskatoon City Hospital (SCH) and Parkridge Centre (PRC). The
hospitals in the RQHR were: Biea General Hospital (RGH), Rpsga Hospital (PH) and
Wascana Rehabilitation Ceat(WRC). All of the hospitals were categorized into three gréaps
investigate the effects of the intervention. Accordingly, RUH and RGH were considered as the
largest hospitals, and SCH and PH were considered to be methiedhhospitals. A Transfer,

Lifting and Repositioning (TLR) program containing engineering and administrative ergonomic
controls was implemented from 20@R05 in three hospitals in Saskatoon, Saskatchewan,
CanadaThe TLR program was implemented at different times by the differemitatsin the

SHR. The time frame was as follows:
SCH: Septembef002i June 2004
PRC: SeptembeR002i September2004
RUH: January2005i December2005

For this study,njury data was collected in the period frdanuaryl, 1999to December 1,@06.

The data collection time frame for different hospitals was as follows:
WRC and PRC: Januaryl, 19991 Septmber,2005
PH and SCH: Januaryl, 19997 June, 2005

RGH and RUH: Januaryl, 19997 December 2006
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Time-loss and nottime-loss ifjury data, lost time days, and claims costs were collected from

the intervention group (three hospitals) and the control group (three hospitals) for corresponding
time periods one year prand one year posttervention. The covariates that were seleetede

age, sex, date of birth (DOB), date of injury, body parts and occupation. This study cmhsider
repeated MSI injuries as the outcome variables. Because these administrative data contained only
information about the injury and there were no identiftcatnumbers, it was hard to identify
repeated injuries because the data contained the number of cases and not the number of
individuals. The DOB, sex, occupation and body parts were used to identify repeated MSls. If
the DOB and sex were the same, thes¢h@ay have been the same individual. However, if the
occupation was different for a short period of time, then they were considered to be different
individuals. In the last step, we checked the body parts involved. If the body parts were the same,
then weconsidered the injury to be a repeated injury; otherwise, there was no repeated injury
involved. Figured.1.1is the data extraction flowchart

Figure 4.1.1: Data extraction flowchart

Control Group Intervention Group
1522 Injury Reports 983 Injury Reports.
TLR Related Injuries? No 552 deleted No O deleted |« TLR Related Injuries ?

Yes Yes.
970 Injury Reports 983 Injury Reports
\
678 Individuals 789 Individuals
Ha\ﬁ%éppateq

[ No =529|[ Yes=149] [ No=675 | [ Yes =114
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In this thesis, the outcome event was the FeRted repeated injyur The survival time was
calculated based on the time to the Tidhated repeated injury for event cases or time to last
follow-up for censored cases depending on health regions. The univariate analysis was adopted
to select the covariates. Then, the seldccovariates were included for the additive hazards
model and the multiplicative hazards model.

To do the survival analysis, we had to assess the repeated injuries from the 1,467 individuals
who had injuredWe also needed to ascertain the censor imglictany TLR injury occurred
beforeJanuaryl, 1999 and after December 1, 2006, it was censored. Additionally, any injury
that was not related to a TRL injury was censored. Furthermore, if the identified individuals did
not have a % injury till the endof data collection time framehey were censored. In this study,

only the first and ¥ injuries were considered for calculating the survival time in months. Based
on the analysis in this study, therere a total of 263 individuals who had a repeategdrin

Among the repeatedly injured individuals were 114 from the intervention group and 149 from
the control group. The survival time was calculated by subtracting the first injury date from the

second injury date and converting it into months.
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5. Results

5.1 Demographic Characteristics
5.1.1 Intervention/Control Group

Individual injury data were pooled for the intervention and control groups. As shown in the
following Table, we have 789 individuals in the intervention group and 678 individudate
control group. Compared to the control group, the intervention group contained more injured

individuals.

Table 5.1.1: Number of individuals in the intervention and control groups

Intervention group | Control group Total

# of injured individuals 789 (54%) 678 (46%) | 1467 (100 %)

5.1.2 Age

From each of the hospitals, injured individua
groups. From the available data, the means and standard deviations were calculated. We noticed

from the followingTable that the mean age for both groups was similar.

Table 5.1.2: Age of injured individuals
Intervention group Control group Total
(N = 789) (N = 678) (N = 1467)
Mean 41.09 38.99 40.04
SD 10.08 10.14 10.11

* SD = Standard Deviation
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5.1.3 Gender

Dataregarding the gender of injured individuals was available for both groups. According to the
available data, sex ratios were calculated and indicated in the folldwainlg. The sex ratio was

similar for both groups @ualue=0.103).

Table 5.1.3: Gender of hjured individuals
Intervention Group Control Group Total
(N = 789) (N = 678) (N = 1467)
# of Female 734 (50 %) 615 (42 %) 1349 (92 %)
# of Male 55 (4 %) 63 (4 %) 118 (8 %)
Sex ratio F/M 13.35 9.97 11.54

* F: Female, MMale
5.1.4 Hospital Size

The rumber of injured individuals at the different types of hospitals was calculated from the
available data. Based on the analytist the result show thabverall, there were significantly
different numbers of injuries among the differently sized hospliefe/eenthe two groups {
value<0.0001).

Table 5.1.4 : Hospital size of injured individuals
Intervention group Control group Total
(N = 789) (N = 678) (N = 1467)
Large 379 (26%) 260 (18%) 639 (44%)
Medium 230 (16%) 182 (13%) 412 (28%)
Small 180 (12%) 236 (16%) 416 (28%)
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5.1.5 Occupation

According to the available information, the majority of injured employees were nurses followed
by attendants. Among the two groups, the intervention group had more injuries than the control
group. Only licensed pcticum nurses (LPN) and others.g., therapists, technicians, unit
supportersandparamedics) had higher injuries in the control group than the intervention group

(p-value<0.001).

Table 5.1.5: Occupation of injured individuals
Intervention group Control group Total

(N =789) (N =678) (N = 1467)
Nurses: RN/GDI 453 (30%) 372 (25%) 825 (56%)
LPN 105 (7%) 112 (8%) 217 (15%)
Attendants 158 (11%) 37 (2%) 195 (13%)

NurseAide/Attendants 13 (1%) 67 (5%) 80 (5%)

Clerks/Unit Assistats 35 (2%) 2 (0.14%) 37 (2%)
Others 25 (2%) 88 (6%) 113 (9%)

*Qthers include therapists, technicians, unit supporters, and paramedics.

* RN: Registered Nurse, GDN: General Duty Nurse, LPN: Licensed Practicum Nurse
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5.1.6 Body Parts

According to theavailable information, injured body parts were identified based on the injured
individual. We noticed that most of the individuals in the intervention gr@agoback injuries
followed by shoulder injuries and then all other body parts. However, in theotgrdup, the

2" highest injury involved all other body parts. Nevertheless, the control group had more injuries
in the back and all other body partsd.,abdomen, chesgndface) than did the intervention

group (pvalue<0.001).

Table 5.1.6: Body parts of injured individuals
Intervention group Control group Total

(N = 789) (N = 678) (N = 1467)
All back injury (except neck) 413 (28%) 243 (16%) 656 (45%)
Shoulder 93 (6%) 30 (2%) 123 (8%)
Neck 41 (3%) 56 (4%) 97 (7%)
Multiple sites 82 (6%) 8 (1%) 90 (6%)
Extremity 77 (5%) 3 (0.2%) 80 (5%)
All other body parts 83 (6%) 338 (23%) 421 (29%)

* All other body parts include abdomen, chest, and face, etc.
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5.1.7 Repeated Injury

In this study, there were 1,467 injured individuals. Among them, 268idhdils had repeated
injures. The demographic information of the repeated injured individuals has been show in the
Table 5.1.7.

Table 5.1.7: Demographic information of repeated injured individual
Intervention group Control group
Number of repeated injad individuals 114" 149™
Age 41.70 + 8.89 37.95 + 9.98
Gender Female 104 (91%) 134 (90%)
Male 10 (9%) 15 (10%)
HospitalSize Large 58 (51%) 41 (28%)
Medium 36 (32%) 54 (36%)
Small 20 (17%) 54 (36%)
Occupation: Nurses RN/GDN 74 (65%) 100 (67%)
LPN 16 (14%) 21 (14%)
Attendants 21 (18%) 3 (2%)
NurseAide/Attendants 0 (0%) 12 8%)
Clerks/Unit Assistants 3 (3%) 0 (0%)
Otherg 0 (0%) 13 (9%)
Body Parts:  All back injury (except neck]) 86 (75%) 88 (59%)
Stoulder 10 (9%) 5 (3%)
Neck 3 (3%) 5 (3%)
Multiple sites 11 (10%) 0 (0%)
Extremity 3 (3%) 0 (0%)
All other body” 1 (1%) 51 (34%)

* 114 repeated injured individual from 789 injured individualintervention group

** 149 repeated jored individual from 678 injured individuals in contgroup

$ For Age: Mean + Standard Deviation

* RN: Registered Nurse, GDN: General Duty Nurse, LPN: Licensed Practicum Nurse

“Others include therapists, technicianmit supporters, and paramedic$ All other body parts include
abdomen, chest, and &etc.
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The proportion of repeated injuries for each group, occupation, and body part is presented in the
following histograms (Figur&.1.7.1i 5.1.7.4).

Figure 5.1.7.1: Proportion of repeated injury by group
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@ Interventio|
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Figure 5.1.7.2: Proportion of repeated injury by occupation
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Interveriion: 74(453) 16(105) 0(13) 21(158) 3(35) 0(25)

* Others includes physical therapists, occupational therapists, recreational therapists, paramedics, operation room
technicians, and dispatch portets The number of individuals belonging to eaettegory is in parentheses.

*Number of Repeated Injury (Number of Total Individual Injury)
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Figure 5.1.7.3: Proportion of repeated injury by body parts
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Figure 5.1.7.4: Proportion of repeated injury by hospital size
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Survival Distribution Function

5.2 Non-Parametric Model
5.2.1 Kaplan-Meier Method

Using the KM analysis, the following results were obtained. The first analysis was performed to
assess the overall difference argathe intervention and control groups (Fig&2.1.1). This

result indicated that before (approximately) 8 months, the two survival curves were close to
identical. After 8 months, the intervention group had a higher probability of survival as
compared tothe control group. The lecank and Wilcoxon test shows that there was a
significant differencein survival functionbetween the intervention and control groups (p
value=0.0013nd0.0063, respectively).

Figure 5.2.1.1: Survival function by group
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Survival Distribution Function

Because more than 90% of the individuals in this study were female, the impact of the treatment
among the females was investigated. The KM analysis for females is given below (Figure
5.2.1.2). Females trended with the treatment group. ABmong females, the legnk and
Wilcoxon tests showed that there were significant differentesirvival function between two
groups(p-value=0.001&nd0.0089, respectively).

Figure 5.2.1.2: Survival function among females by group
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Survival Distribution Function

To see the effect of the TLR trainimgterventionamong the various hospital sizes, the analysis
was done on three sizes of hospitals: Large (Fi§lzd.3), Medium (Figur®é.2.1.4) and Small
(Figure5.2.1.5). The KMestimatesre presented in the foling Figures.

From these three analyses (Figube2.1.3,5.2.1.4, andb.2.1.5) based on the hospital size, the
large hospitalshoweddifferently than medium and smalizedhospitals.The medium and small
sized hospitals trended similarly to the treattnhgroup.The p-values for the medium sized
hospitals given by the legank and Wilcoxon tests are 0.0388d0.028, respectively. The-p
values for the small hospitals given by the-tagk and Wilcoxon tests are 0.0042d 0.0087,
respectivelyHowever,the brge hospitals showed no significant intervention effect by the log
rank and Wilcoxon tests (0.54239d0.7418, respectively).

Figure 5.2.1.3: Survival function among large sized hospitals by group
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Survival Distribution Function
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Figure 5.2.1.4: Survival funcion among medium sized hospitals by group
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Figure 5.2.1.5: Survival function among small sized hospitals by group
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Survival Distribution Function

Because the majority of the individuals in this study had an occupation relatesitagnonly
the nursing and nursing aide occupations were considerednalysis. The KM analysis
provided similar results(Figure 5.2.1.6). Also, the logrank and Wilcoxon tests revealed a
significant difference between the intervention and controlgsqpvalues=0.0062nd0.0216,

respectively).

Figure 5.2.1.6: Survival function among nurses/nursing aides by group
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Survival Distribution Function

When body parts were considered, the same results pattern as that of the treatment group was
shownin Figure5.2.1.7. Because the majority of injuries were in the back, neck and shoulders,
injuries to these three body parts were considered for the analysis. Test results showed a
significant difference between the intervention and control groupsl(®=0.0075nd 0.0166,
respectively for the logank and Wilcoxon tests).

Figure 5.2.1.7: Survival function among back, neck and shoulder by group
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5.3 Cox Multiplicative Hazards Model
5.3.1 Cox Univariate Hazards Model

To considethe model, tle covariate was selected for the univariate analysis of the multiplicative
hazards model (Tab®3.1).Age, gender, igup (interventiorversuscontrol), occupation, body

parts and hospital size (large and small) were selected fanthariate modelAnlysis showed

that age and gender was not significant (Table 5.3.1) for the mod#lis model, we have
considered the dichotomous variable oceupatic
nurses (all except nurses and nurse aide,-NiHA). In the sameway, dichotomous variable

body parts has been considered as back, neck & shoulders (BNS) and other body parts (except
back, neck and shoulders; N&INS).

Table 5.3.1: Cox univariate hazards model

Covariates Estimates (S.E) HR  P-Value 95%Cl"

Age -0.0057 (0.0062) 0.994 0.3551 0.982i 1.006
Gender Female -0.2533(0.2104) 0.776 0.2285 0.5147 1.172
Group Intervention -0.4019 (0.1254) 0.669 0.0014 0.523i 0.856
Hospital Size Large -0.3141 (0.1461) 0.730 0.0316 0.548i 0.973

Small -0.3284 (0.1583) 0.720 0.0380 0.528i 0.982

Occupation’ NNA 0.5888 (0.1737) 1.802 0.000/ 1.282i 2.533

Body Parts™ BNS 0.6709 (0.1426) 1.956 <0.0001 1.956i 2.587

"S.E.: Standard Error;HR: Hazard Ratio; Cl: Confidence Interval
* Othersinclude Therapists, Technicians, Unit Supporters, and Parametiics
™ Other Body Partscludes Abdomen, Chest, Facetc

Note: In this analysis, theeferencegroup: Male for gender, control for group, medium for hospital sine;
nursesfor occupation(Non-NNA), and other body paresxcept back, neck and shoeidor body partgNon-
BNS)
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5.3.2 Cox Multivariate Hazards Model

From the univariate analysis (Tat3e.1), we noticed that age and gender were not significant
(p-values=0.35 and 0.22, respectively); however, regarding their biological importance, they
were considered in the multivariate multiplicative model. The analysis showed that these two
covariates were not significant-¢alues=0.86 and 0.26, respectively). Although hospital sizes
were significant in the univariate analysis, size did not have afisgm impact on the
multivariate model for large and small sized hospitalsgjues=0.45 and 0.52, respectively).
Thus, age, gender, and hospital sizes were not selected for the final model. Because it was
observed that group, occupation and body passe significant for the models, they were
considered for the final Cox multivariate multiplicative hazards model.

Table 5.3.2: Cox multivariate hazards model
Covariates Estimates (S.E)  HR~  P-value 95% C[~
Group Intervention -0.4686 (0.1276) 0.63 0.0002 0.497-0.804
Occupation NNA  0.5401 (0.1745) 1.72 0.002 1.219-2.416
Body Parts BNS 0.7643 (0.1444) 2.15 <0.0001 1.618-2.850

"S.E.: Standarérror;” HR: Hazard Ratio; Cl: Confidence Interval
* Othersinclude Therapists, Technicians, Unit Supporters, and Parametics
** Other Body PartgicludesAbdomen, Chest, Facetc

Note: In this analysis, thesferencegroup: Control for group,, nonnursesfor occupation(Non-NNA), and
other body partexcept back, neck and shoulder body part§Non-BNS)

Considering the group, occupation and body parts in the final Cox multivariate multiplicative
hazards model, analysis has been doHRee intraction was checked, but no significant
interaction was observed. Analysis showed that all of the selected covar@atestatistically

significant on repeated injuries.

The group variable was significant for the Cox multivariate multiplicative hazaodte! The
results showethat the intervention group had a 27% lower risk of repeated injury as compared
to the control group after the TLR intervention program (HR: 0.63, 95% CI: 0.49, 0.80) (Table
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5.3.2). Similar to the group, occupation was significkm the Cox multivariate multiplicative
hazards model. Compared Mon-NNA, nurses and nursing aid@$NA) had a 72% higher risk

of repeated injury (HR: 1.72, 95% CI: 1.22, 2.42). As with group and occupation, body parts
were significant for the Cox miMariate multiplicative hazards model. The back, neck and
shoulder(BNS) were the most repeatedly injured body parts. Compared to other body parts
(Non-BNYS), the back, neck and should@NS) had a 115% increased risk of repeated injury
(HR: 2.15, 95% CI1.62, 2.85).
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Martingale Residual

5.3.3 Goodness of Fit

In this section, the adequacy of the Cox multivariate multiplicative hazards model was checked
using the martingale residuals, deviance residaals$ Arjas plots.

5.3.3.1 Martingale residual plot:

Figure 5.3.3.1: Martingale residuals plotted against survival time

Plot of ro*Time_MWth. Legend: A = 1 obs, 8 = 2 abs, =tc.
1.0~ LIBA
DHHJDDAAAC A A A
EDCEEECA CCCA A& B
FO FRESACCEA A
DFC DEAMA A MACA 5 BAL AAMA A
0.8 L EBE B A A AA A
| IE AACAAA B A
CAL A A
AAE AR
A A BAMA A
0.6 - & B
A
A
&
A
0.4+
os —
0.0 L HUMGAS
ATRVEIIGFFDA ABE A
ASGFLLIGHEAA & B AACA @ A EAAARDCAACACADCAACACADACAAR
ADBEKHD AB FOEHGFHDFPHIGEDDEADEEDDE IECIAAFEA
Ak AD AA A B BEFC SDCCDEDBEKECHFEDAS FEFAGDEGA DFCA L &
-0.2 1 2 A AD ECCCDA A AEDDEIFEJ2ESIDDOBCADFAMAC
& FAGIGLHLIKFJLIIDCE A AB
BISGKHMIBGPPDCCEACAR A
2 AEE AE
CADACE BEZ
-0.4 L A DABCEES
DEMHCCEFECHDEFER
AB
CAAFBER A
0.6 L
| | | |
1 1 1 1
o 10 20 ao 40 ED &0 70 B

Time in Months

56



Estimated Cumulative Hazards Rates

From the above martingale residual plots against time, we observed that some of the individuals
had large negative values; thus, they had long survival times. This irgdtbatethey may have

the chance of getting injured again soon. Also, some individuals had residuals close to unity,
which indicates that the individuals had the repeated injury within a short period of time.
Particularly, one individual had too long a sual time in months, and some of the individuals

did not fit the model well.

5.3.32 Arjas plot

Figure 5.3.32: Arjas residual plots of estimated cumulative hazards rates
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An Arjas plot is used to check the overall fit of the nmlitative hazards model for the
intervention and control groug80). We noticed that the two curvesie roughly close to the

45’ line after the 5 failures. They were roughly parallel, which nearly satisfied the proportionality
assumption. Thus, this may suggest that the multiplicative model is appropriate.
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5.4 Additive Hazards Model
5 4.1 Aalenb6bs Additive Hazards Model

The result othe analysis showed that the group, occupation and body parts had significant effect

on the repeated MSIs{mlue<0.0001). To further examine the relationship between the group,
occupation and body partsn ANOVA Table was constructed using one degree of freedom. The
intervention group had significantly different repeated injuries than the control group, adjusting

for the other covariates {palue=0.0002). Considering occupation and body parts, there were
significant differences in the types of repeated injurieshis model, we have considered the
dichotomous variable occupati on -narses (aluexcept s and
nurses and nurse aide, NBINA). In the same way, dichotomous \&bie body parts has been
considered as back, neck & shoulders (BNS) and other body parts (except back, neck and
shoulders; NotBNS).

Table5. 4. 1: Aalenbdés additive hazj
Global Test
Chi-Square D.F* P-value
50.72 3 <0.0001
ANOVA
Covariates Chi-Square P-Value
Group: Intervention’ 13.76 0.0002
Occupationn Nur ses and | 11.33 0.0008
Body Parts Back, Neck, and Shoulder 31.77 0.0000

" D.F.: Degrees of Freedom
" Control group is the reference group
" Others (e.qg., Therapistseghnicians, Unit Supporters, and Paramedics) is the reference occupation

™ Other Body Parts (e.g., Abdomen, Chest, and Face) is the reference body parts
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Estimated Cumulative Regression Function for Group

t he Aal
regression function has been examinedong wih its upper and lower 95% pointise

| n ends model , I n ower tone the estinated iclsnulaivei z e
confidence limits The plot of theestimatel cumulativeregression function®r group (Figure

5.4.1.1) showed that there waso covariate effect on the hazard up to 8 menifhefigure

5.4.1.1 showed that, for the period 628 months, the slope for group was negative and clear
effects of decreasing hazard, but after that it was approximately constant. So, based on the plot, it
has been concluded thiatervention grouphad the less risk of repeated injuag compared to

the control group.

Figure 5.4.1.1: Estimated cumulativeregression functionsfor group with 95% confidence

interval
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Estimated Cumulative Regression Functions for Occupations

The estimated cumulativeegression functiongor occupationshowed that there may be time
varying occupation effect among nurdecausets shows the nezero slope over time (Figure
5.4.1.2).1t has been observed that tt@variate effect®f occupatiorhave been increased up

10 monthsThe following figure sows thatafter10 monthghat it is constantapproximately)

Figure 5.4.1.2: Estimated cumulativeregression functionsfor occupation with 95%

confidence interval
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Estimated Cumulative RegressiorFunctions for Body

The estimated cumulativeegression functionsor body pars showed that there may be time
varying body parts effediecauséts shows thgositiveslope over timgFigure5.4.1.3)and 95%
confidence interval of the covariate effects did not includes #ehas been observed that, tap
10 months the covariateeffectsof body partshas been increased, after titas approximately

constant.

Figure 5.4.1.3: Estimated cumulativeregression functionsfor body parts with 95%

confidence interval
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5.4.2 Lin and Ying Additive Hazards Model

All the variables deemed significant by the univariate analysis were considered in the univariate
L-Y additive hazards model. The results are shown in Tabla.1.

The univariate LY additive hazards model indicates that the group, hospital sizee (&rd

small), occupationand body parts were significant for the multivariatey ladditive hazards

model (Table5.4.2.1). Considering all the significant covariates in th¥ khdditive hazards

model, multivariate analysis was conducted; this showed tsgitial sizes were not significant

for the LY additive hazards model {galues=0.38 and 0.44, respectively). The fina¥ L

additive hazards model includes group, occupation and body parthis model, we have
considered the dichotomous variable occupajtn as nur ses and nurseods
nurses (all except nurses and nurse aide,-NidA). In the same way, dichotomous variable

body parts has been considered as back, neck & shoulders (BNS) and other body parts (except
back, neck and shoulders; N8INS).

Table 5.4.2.1: Univariate Lin and Ying additive hazards model

Covariates Estimate (S.E”) ER™ P-Value 95% CI

Age -0.00002 (.00003) 0.0002 0.4555 (-0.00008-0.00003
Gender. Femal -0.00164 (.00151) - 0.001 0.2781 (-0.00461, 0.00132
Group: Intervention -0.00226 (.00071) - 0.002  0.0015 (-0.00366 -0.00086
Hospital Size Large -0.00188 (.00090) - 0.001  0.0377 (-0.00366 -0.00019

Small -0.00189 (.@091) -0.001 0.0388 (-0.00369-0.00009

Occupation: NNA 0.00277 (.00069) 0.002 0.00006 (0.001410.00413

Body Parts BNS 0.00344 (.00067) 0.003 0.000Q (0.00212 0.00476

"S.E.: Standard Error;ER: Excess Risk Cl: Confidence Interval
* OthersincludeTherapists, Technicians, Unit Supporters, Parameeliics
™ Other Body PartscludesAbdomen, ChestFace etc
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Note: In this analysis, theeferencegroup: Male for gender, control for group, medium foispital size,, nor+
nursedor occupationfNon-NNA), and other body par{except back, neck and shouldfer) body part{Non-BNS)

The final LY additive hazards model shows that other covariates, such as intervention group,
had significantly different tyes of repeated injuries than the control growwalone=0.0005)
(Table5.4.2.2). The estimate is negativ®.0025), indicating that the intervention group had
protection from repeated injury as compared to the control group, which had 0.002 more
repeatedlLR injuries than the intervention groue. 2 person repeated injury can be prevented
per 1000 persanRegarding occupation, nurses and nursing aidé€sA) had the most
significantly different injuries thanon-nursegNon-NNA) occupations and 0.002 m®repeated

TLR injuries hazards (ER=0.002:-yalue=0.0005; 95%CI=0.001 0.0038) (Table5.4.2.2)

which indicates thatonNNA had 2lessrepeated injury compared MNA per 1000 Regarding

body parts, the back, neck and should®NS) had the most sigficantly different repeated
injury instances than did other body paffion-BNS). Among the body parts, combined back,
neck & shoulder had 0.003 more repeated TLR injuries hazards than other body parts
(ER=0.003; pvalue <0.0001; 95% CI=0.0025 0.0051) (T=ble 5.4.2.2) which indicates that
Non-BNS had 3lessrepeated injury compared BNS per 1000

Table 5.4.2.2:Multivariate Lin and Ying additive hazards model
Covariates Estimate (S.E.) ER~ P-Value 95% CI
Group: Intervention -0.0025 (0.0007) - 0.002 0.0005 -.0039--.0010
Occupation: NNA 0.0024 (0.0006) 0.002 0.0005 .001071.0038
Body Parts BNS 0.0038 (0.0006) 0.003 <0.0001 .0025-.0051

"S.E.: Standard Error;ER: Excess Risk; Cl: Confidence Interval
" OthersincludeTherapists, Technicians, Unit Supporters, Parameeics
™ Other Body PartscludesAbdomen, Chest, Facetc

Note: In this analysis, theeferencegroup: Control for group, non-nursesfor occupation(Non-NNA), and other
body partgexcept back, neck and shouldfen) body part§Non-BNS).
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5.5 Goodness of Fit for the LY Additive Hazards Model

To check the adequacy of the model, Arjas and martingale plotsusedefor the final selected
covariates. The plots are presented below.

5.5.1: Arjas plot

Figure 5.5.1(a) shows that the lines are approximately close %o wiBich indicates that the

group fit the model well. Figur®.5.1(b) also shows that nurses, nugsiaides and other
occupations are approximately close to th& [#. However, nurses and nursing aides had the
smallest number of repeated injuries as compared to others. Thus, the-upllome was
shorter. Notably, the Arjas plot of nurses and nursiites is not long enough but reasonably
satisfies the model. However, for the body parts, we observed that the back, neck and shoulders
have concave downwards curves that are far from tAdim5[Figure5.5.1(c)]. Thus, we may

conclude that the model maot be appropriate in regard to the covariates body parts.

Figure 5.5.1(a): Expected cumulative hazards rate for group
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Figure 5.5.1 (b): Expected cumulative hazards rate for occupation
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Figure 5.5.1 (c): Expected cumulative hazards rate for body parts
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5.5.2 Martingale Residuals Plots

Figure5.5.2 ac showthe Martingale residuals plofer the L-Y additive model Figure5.5.2(a)

does not show any distinguishable pattern, but because the intervention group was protected
from repeated injuries, the plots are below the origin line, which irelidhgt it is acceptable for

the model.Figure 5.5.2(b) indicates that up to four months, there are some increasing trends,
which disappear after that and move approximately constantly. Thus, we approximate that
occupations reasonably fit the mod€&igure 5.5.2(c) shows significantly increasing trends,
which is consistent with Arjas plot. Thus, the body parts raise some doubt for the model.

Figure5.5.2(c): Martingale residuals for body parts was plotted against survival time
Based on the above Arjas rasid plots and Martingale residuals plots, we may conclude that the

main effects of group and occupations are reasonably fit for the Lin and Ying additive hazards
model, but the body parts are questionable.

Figure 5.5.2 (a): Martingale residuals plot forgroup
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Martingale Residuals

Martingale Residuals

Figure 5.5.2 (b): Martingale residuals plot foroccupation

Time in Months

Figure 5.5.2 (c): Martingale residuals plot forbody parts
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5.6 Summary of Results for the Final Multivariate Cox and LY Models

Table 5.6.1 showscomparison ofthe results from the final Cox multivariate multiplicative
hazards model and Lin and Ying additive hazards moBeb models provide the same
significant factors: group, occupations, and body parts, as exg@@ed he estimates that were
obtained from the angdis were different. Because one model is multiplicative and the others are
additive, they are not comparable. Based on the gooariidésassessment for both models,
group and occupations are reasonably adequate for the model, but the body parts isariable

guestionable for both models.

Table 5.6.1: Comparison of Cox and Lin and Ying additive hazards models

Model Covariates | Estimates (S.E) | HR'/ER* | P-value 95% CI’
Cox Group -0.4686 (0.1276) 0.63 0.0002 0.497- 0.804
Occupation | 0.5401 (0.1745) 1.72 0.002 1.219- 2.416

Body Parts | 0.7643 (0.1444) 2.15 <0.0001 1.618-2.850

Additive Group -0.0025 (0.0007)| -0.002 0.0005 | -0.0039--0.0010
Occupation | 0.0024 (0.0006) 0.002 0.0005 0.00101 0.0038

Body Parts | 0.0038 (0.0006) 0.003 <0.0001 0.0025- 0.0051

"S.E.: Standard Error; HR: Hazard Ratio: Cl: Confidence Interval

" ER: Excess Risk
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6. Discussion

To reduce the risk of transfer, lifting and repositioning (Ti&pated repeated injuries from
patient handhg, an ergonomic injury prevention program was implemented for the healthcare
workers in the intervention group. However, no intervention program was implemented for the
control group. Both the intervention and control groups were contained within thspéatho
sizes: large, medium and small. The goal of this study wawéstigatethe effectiveness of the

injury prevention program using the multiplicative Cox and additive hazards models. Based on
our analysis, the results indicate that the TLR inteiganprogram was effective and sustained

for healthcare workers by reducing repeated injuries induced by patient handling. Therefore, the
risks of patient handlingelated repeated injuries among healthcare workers can be lowered by

implementing a multfactor TLR intervention program with the right equipment and training.

The TLR intervention program was implemented for the healthcare workers in the intervention
group as compared to the control group. The multivariate Cox model showed that the
interventian group had 27% fewer repeated injuries than the control group, which indicates the
effectiveness of the TLR intervention program. The intervention group also showed protection
from repeated TLR injures by theX additive hazards model. The interventicogp had 0.002

fewer hazards for repeated injuries than the control group, which supports the result of the Cox
model. On the other hand, nurses and nursing aides had the most repeated injuries by occupation;
the Cox model showed a 72% higher hazard okaggd injuries than other occupations.
According to the LY model, nurses and nursing aides had a 0.0024 higher risk of repeated
injuries than other occupations. Nurses and nursing aides are directly involved in patient
handling. Although the TLR interveioh program was implemented for the intervention group,
they still had a higher risk of repeated injuries regarding TLR, which showed significance in the
model. Among all of the healthcare workers, body parts were the most significant risk factor for
repeded injuries. The Cox model indicated that the back, neck and shoulders had a 115%
increased risk of repeated injuries as compared to other body parts-Ytalditive hazards

model also showed that the back, neck and shoulder had a 0.0038 increasddapated

injures than the others body parts. Both the Cox al Lmo de |l s, as wel | as
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hazards model, showed that the TLR intervention program had a significant impact on reducing
repeated injures among healthcare workers.

The Cox modelis the most widely used model for the analysis of survival data in clinical
research. However, the proportional hazard assumption may not always be satisfied in the data.
In such cases, there are various solutions to consider; for example, inclusiome&tlagendent
covariate. While the coefficients in the Cox model act in a multiplicative way on unknown
baseline hazards, coefficients in the additive hazards models act in an additive way on unknown
baseline hazards. Because the coefficients act in eliffavays in the multiplicative and additive
hazards models, it is very difficult to compare them directly. In this thesis, the multiplicative and
additive hazards models similarly identified the significant covariates of the repeated injuries
among healthare workers. However, the different models interpreted the coefficients in different
ways. The association between the covariates and the time to repeated injuries in the additive
hazards models was explained in terms of the risk difference or excesathiskthan the risk

ratio. However, if one would like to estimate the cumulative hazard of an event for more extreme
values, the additive and the Cox hazards models estimates are remarkably dBfetesmg the

time varying covariates effecthis can be settéd on by which are taken into account by the
additive hazards model but not aynultiplicative Cox hazards modeéVloreover, when using a

more compromised covariate profile, the multiplicative model gives a higher estimate than the
additive mod& probably because othe multiplicative effect of fixed covariates on baseline
function(21).

In this thesis administrative data was used that had been supplied by two Health R&diens

data acquisition, injury classification criteria, and data extraction process could not be controlled

or evaluated. The Il ack of information on the
the total number of direct care workers employéceach site weakened the study. Another
drawback of the data was that there was no identification number for the control Tinogpin

case of identified the repeated injury there would be personal selectioif ldaadditive models

have some limitatbk s .  Aal end6s mo d e ldepthanfprmationoon thedeffectrnfoar e i n

prognostic factor over ti me. However, one has
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simple interpretation of the ef f eesstagpealinginno:t
real applications than other models. A theoretical limitation of the Lin and Ying additive hazards
model is that the linear predictors in the model constrain to be po§ii%yeA very practical
limitation of the additive hazards models is the availability of computer programs. For the Cox
hazards model, various statistical softwpaekages are available, and it is easy to fit the models.
However, for the additive hazards model, any standard procedure is limited to SAS, R, and Stat.
Few macros are available for the analysis of goodness ¢24jt 84) Because the different

macros are not used globally, it will be difficult to make a real comparison.

In many applications, the additive hazards models are plausible and often attractive
epidemiologic applications, where the baseline hazards is taken to be the baseline mortality of
the population and the coefficient measures the excess risk of the patients under study. As an
example, in a study of diabetic patie(8%), if the measured covariates predict the severity of
disease and its downstream mortality/morbidity, but have no impact on independent causes of
death, such as malignancy, then the multiplicative hazards model might not be appropriate. In
such cases, the additive hazards model may be better for patients with more severe clinical
profiles, which is relevant to the development of patient manageamehtare(86). The risk
difference can be more important than the risk ratio in understanding an association between a
risk factor and disease occurrer{@®). The results of this study are also consistent aitbther
published study22).
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7. Conclusion

Generally, the preference between the Cox hazards model and the additive hazards model will
normally be a practical matter. Although in theory, either model can provide adequate fit to a
given time to event data set, the more parsimonious one will unquestionaphgfbeableto

clinical investigators. An overall conclusion is that the multiplicatared additive hazards
models describe different features of the association between the risk factors and the study
outcomes. Practitioners may benefit from the use of statistical models, which help in predicting
the effect of one or more variables and @rifying their influence on the study outcomes. It
seems desirable to use them together as complementary methods so as to give a more
comprehensive understanding of the data. Furthermore, the additive hazards model can be

expanded to a competing risks sgjtin survival analysis

73



10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

8. References

Collet D. Modelling Survival Data in Medical Research. Second ed: Chapman &
Hall/CRC CRC Press LLC; 2003.

Kleinbaum DG, Klein M. Survival Analysis: A Selfearning Text. Second ed: Springer;
2005.

Lawless JF. Statistical Models and Methods for Lifetime Data Analysis. 2nd ed. New
York: Wiley; 2002.

Klein JP, & Moeschberger, M.L. Survival Analysis: Techniques for Censored and
Truncated Data. 2nd Edition &d. Dietz MG, K. Krickeberg, J. Samet, A. Tsiatis, editor:
Springer; 2003.

Lee ET, Wang JW. Statistical Methods for Survival Data Analysis. Third ed. New York:
Wiley-Interscience; 2003.

Vi P. Musculoskeletal Disorders (MSDs). Construction Safety Association of Ontario;
Available from:http://www.csao.org/t.tools/t6.news/msd.cfm

Statistics USBoL. Occupational Safeand Health Definitions. In: Labor USDo, editor.
Disorders CoREftPoM. How well do we understand MSDs and their burdens? Waterloo,
ON, Canada; Available fronfittp://cremsd.uwaterloo.ca/Understanding_MSDs.aspx
Semple JC. Tenosynovitis, Repetitive Strain Injury, Cumulative Trauma Disorder, and
Overuse Syndrome, fetera. Journal of Bone and Joint Surg@riish Volume1991;
73(4):5368.

Barlow Y, Willoughby J. Pathophysiology of Sdi$sue Repair. British Medical Bulletin
1992; 48(3):698711.

Barr AE, Barbe MF. Pathophysiological tissue changes associated with repetitive
movement: A review of the evidence. Bloal Therapy2002;82(2):1737.

Szabo RM. Determining causation of weaedated upper extremity disorders. Clin Occup
Environ Med2006;5(2):2234, v.

CrumptonYoung LL, Killough MK, Parker PL, Brandon KM. Quantitative analysis of
cumulative trauma risk factors and risk factor interactions. Journal of Occupational and
Environmental Medicine2000;42(10):1028.

Bernard BP, PutAnderson V, Burt SE, Cole LL, Fairfielstill C, Fine LJ, et al.
Muscuoskeletal Disorders and Workplace FactdmsU.S. DoHaHS, editor.: National
Institute for Occupational Safety and Health (NIOSH); July 1997.

ConchaBarrientos M ND, Driscoll T, Steenland N, Punnett L, Fingerhut M, Pds&n

A, Corvalan C, Leigh J, Punnett L, Tak S. Selected occupational risk factors. In: Ezzati
M, Lopez A, Rodgers A, Murray C editors. Comparative quantification of health risks:
global and regional burden of disease attributabletected major risk factors. Geneva:
World Health Organization; 2004. p. 16802.

Magee DJ. Orthopedic Physical Assessment 5th Edition ed: A Saunders Co. ; 2007.
Cox DR. Rregression Models and L-ifables. Journal of the Royal

Statistical Society Series-8tatistical Methodology1972;34(2):1-&%.

Aalen OO. A LineaiRregression Model for the Analysis of Life Times. Statistics in
Medicine. [Article]. 1989 Aug;8(8):9025.

Lin DY, and Ying, Z., Additive Haards Regression Models for Survival Data: Springer;
1997.

74


http://www.csao.org/t.tools/t6.news/msd.cfm
http://cre-msd.uwaterloo.ca/Understanding_MSDs.aspx

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.
32.

33.

34.

35.

36.

37.

38.

39.

40.

Lin DY, Ying ZL. Semiparametric analysis of general add#meltiplicative hazard

models for counting processes. Annals of Statistics1995;23(5)34.12

Lin DY, Ying ZL. Semiparametric Analysis of the Additive Risk Model.
Biometrikal994;81(1):61.

Lim HJ, Zhang X. Sermparametric additive risk models: Application to injury duration
study. Accident Analysis and Prevention2009;41(2):81

Wells R. Why have we not solved the MSD problem? WWadournal of Prevention
Assessment & Rehabilitation2009;34(1):147T.

Takala J. Introductory report of the International Labor Office. International
Occupational &fety and Health Information Center, Geneva, International Labor Office.
1999.

Menzel NN. Back pain prevalence in nursing personnel: measurement issues. Aaohn J
2004;52(2):5465.

Turnbull N, Dornan J, Fletcher B, Wilson Brevalence of Spinal Pain among the Staff

of a District Health Authority. Occupational Medick@ford1992;42(3):143.

Heap DC. LowBack Injuries in Nursing Staff. Journal of the Society of Occupational
Medicine1987;37(2):6®.

Cunningham C, Flynn T, Blake C. Low back pain and occupation among Irish health
service workers. Occupational Medici@xford2006;56(7):44-54.

Marras WS, Cutlip RG, Burt SE, Waters TR. National occupational research agenda
(NORA) future directions in occupational musculoskeletal disorder health research.
Applied Ergonomics2009;40(1):12%2.

Council NHCaSAS. State of the Sector/ Healthcare and Social Assistance: Identification
of Research Opportitres for the Next Decade of NORA 2009.

Council NHaSAS. National Healthcare and Social Assistance Sector Agenda 2009.
Zinn JS. The Influence of Nurse Wage Differentials on Nurbiogne Staffing and

Resident Care Decisions. Gerontolog#93;33(6):7219.

Zontek TL, Isernhagen JC, Ogle BR. Psychosocial factors contributing to occupational
injuries among direct care workers. Aaohn J2009;57(8)2338

Statistics BoL. Nonfatal Occupational Injuries and lliness RequiDiaigs away from

work, 2007. 2008; Available fromvww.bls.gov/iiffhome.htm

Engkvist IL, Hagberg M, Linden A, Malker B. Ovexertion Back Accidents among
Nurses Aides in SwedeBafety Sciencel1992;15(2):9D8.

Engkuvist IL. Back injuries among nurseé comparison of the accident processes after a
10-year followrup. Safety Science. [Proceedings Paper]. 2008 Feb;46(232B1

Engkvist IL, Hagberg M, Hjelm EWMenckel E, Ekenvall L, group Ps. The accident
process preceding overexertion back injuries in nursing personnel. Scandinavian Journal
of Work Environment & Health. [Article]. 1998 Oct;24(5):3GB.

Smedley J, Egger P, Cooper Coggon D. Manual Handling Activities and Risk of
Low-backpain in Nurses. Occupational and Environmental Medicine1995;52(33.160
Koppelaar E, Knibbe JJ, Miedema HS, Burdorf A. Determinants of implementation of
primary peventive interventions on patient handling in healthcare: a systematic review.
Occupational and Environmental Medicine2009;66(6):863

Smedley J, Trevelyan F, Inskip H, Buckle P, Cooper C, Coggon D. Impact of ergonomic
intervention on back pain among nurses. Scandinavian Journal of Work Environment &
Health2003;29(2):1123.

75


http://www.bls.gov/iif/home.htm

4].

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

Smedley J, Inskip H, Trevelyan F, Buckle P, Cooper C, Coggon D. Risk factors for
incident neck and shoulder pain in hospitaises. Occupational and Environmental
Medicine2003;60(11):869.

Trinkoff AM, Brady B, Nielsen K. Workplace prevention and musculoskeletal injuries in
nurses. Journal of Nursing Administration2003;33(3):853

Byrns G, ReedeG, Jin G, Pachis K. Risk factors for wemidated low back pain in
registered nurses, and potential obstacles in using mechanical lifting devices. Journal of
Occupational and Environmental Hygiene2004;1(1211

Pompeii LA, Lipscomb HJ, Schoenfisch AL, Dement JM. Musculoskeletal Injuries
Resulting From Patient Handling Tasks Among Hospital Workers. American Journal of
Industrial Medicine. [Article]. 2009 Jul;52(7):578.

Alamgir H, Cvitkovich Y, YusS, Yassi A. Workrelated injury among direct care
occupations in British Columbia, Canada. Occupational and Environmental
Medicine2007;64:7695.

Power JD, Perruccio AV, Desmeules M, Lagace C, Badley EM. Ambulatory physician
care for musculoskeletal disorders in Canada. Journal of Rheumatology2006;3361):133
Crook J, Moldofsky H. Prognostic indicators of disability after a welkted
musculoskeletal injury. Fibromyalgia, Chronic Fatigue Syndrome Repetitive Strain
Injury1995:1559.

Koehoorn M, Demers PA, Hertzman C, Village J, Kennedy SM. Work organization and
musculoskeletal injuries among a cohort of health care workers. Scandinavian Journal of
Work Envionment & Health2006;32(4):28%3.

Bot SDM, Terwee CB, van der Windt D, van der Beek AJ, Bouter LM, Dekker J. Work
related physical and psychosocial risk factors for sick leave in patients with neck or upper
extremity complaintsinternational Archives of Occupational and Environmental Health
2007 Aug;80(8):73311.

Arjas E. A Graphical Method for Assessing Goodness of Fit in Cox Proportional Hazards
Model. Journal of the American Statistical Assooafi988;83(401):204.2.

Struthers CA, Kalbfleisch JD. Misspecified Proportional Hazard Models. Biometrika
1986; 73(2):36®.

Bretagnolle J, Hubercarol C. Effects of Omitting Covariates in Cox Model for Survival
Data. Scandiavian Journal of Statistics1988;15(2):12%

Aalen O. A Model for Nonparametric Regression Analysis Of Counting Processes.
Lecture Notes in Statistics. [Lecture Notes]. 19860251

Aalen O. Nonparametric Inference for a Family oi@tng Processes. Annals of

Statistics 1978; 6(4):7026.

Buckley JD. Additive and Multiplicative Models for Relative Survival Rates.

Biometrics 1984; 40(1):562.

Berkson J, Gage RP. Calculation of Survival Rates foc@afroceedings of the Staff
Meetings of the Mayo Clinic 1950; 25(11):286.

Andersen PK, Vaeth M. Simple Parametric and Nonparametric Models for Excess and
Relative Mortality. Biometrics 1989; 45(2):52&5.

Mau J. A corparison of counting process models for complicated life histories,. Applied
Stochastic Models and Data Analysis,1988 December, ;Volume 4 (Issue 4):

Pages 2838.

76



59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.
70.

71.

72.

73.

74.

75.

76.

Mau J. On a Graphical Method for the Detection of Fuepenént Effects of

Covariates in Survival Data. Applied Statistitsurnal of the Royal Statistical Society
Series C1986;35(3):2455.

McKeague IW, Utikal KJ. Goodness-Fit Tests for Additive Hazards and Proportional
Hazards Models. Scandinavian Journal of Statistics 1991;18(393.77

Huffer FW, McKeague IW. Survival analysis using additive risk models, technical report
396, : Department of Statistics, Stanford University,1987.

McKeague IW. Esination for a Semimartingale Regression Model Using the Method of
Sieves. Annals of Statistics 1986; 14(2):5®

Aalen OO. Further Results on the Nonparametric Linear Regression Model in Survival
Analysis. Statistics in Medicel1993;12(17):15688.

Breslow NE, Day NE. Statistical methods in cancer research. Voluified analysis of
casecontrol studies. IARC Sci Publ1980(32)338.

Pocock SJ, Gore SM, Kerr GR. Long term survival analysis: the curabilineast

cancer. Stat Med1982;1(2):9%4.

Pierce DA, Preston DlHazard Function Modeling for Dogeesponse Analysis of
Incidence in the Atomic Bomb Survivor Data. Prentice, R L And D J Thompson Atomic
Bomb Surviwor Data: Utilization and Analysis; Meeting, Alta, Utah, USA, Septl62

1983 Ix+289p Siam (Society for Industrial and Applied Mathematics): Philadelphia, Pa,
USA lllus Paper1984:566.

Breslow NE, Day NE. International Agenéy Research on Cancer (IARC) Scientific
Publications No. 82. Statistical Methods in Cancer Research Vol. Il The Design and
Analysis of Cohort Studies. Breslow, N E And N E Day larc (International Agency for
Researclon Cancer) Scientific Publications, No 82 Statistical Methods in Cancer
Research, Vol li: The Design and Analysis of Cohort Studies Xii+406p larc: Lyon,
France; (Dist In the USA by Oxford University Press: New York, New York, USA)
Nlus1987:X11+406P.

Huffer FW, McKeague IW. Weighted LeaSguares Estimation for Aalen Additive Risk
Model. Journal of the American Statistical Association 1991;86(4132914

Cox DR, Oakes D. Analysis of Survival Dathpndon: Chapman & Hall; 1984.
Martinussen T, Scheike TH. A flexible additive multiplicative hazard model.
Biometrika2002;89(2):2838.

Torner A. Proportional Hazards and Additive Regression Analhysis of Survival for
Sevee Breast Cancer. Technical Report. Stockholm: Stockholm University,
Mathematical Statistics DoM;2004.

Cao H. A Comparison Between the Additive and Multiplicative Risk Models. Que'bec:
Universite' Laval; 2005.

Bhattacharyg M, Klein JP. A note on testing in Aalen's additive hazards regression
models. Statistics in Medicine2005;24(14):228%

Allison PD. Survival Analysis Using SAS: A Practical Guide. First ed: SAS Publishing;
1995.

KaplanEL, Meier P. Nonparametric Estimation From Incomplete Observations.
Journal of the American Statistical Association1958;53(282)8157

Hosmer DW, Lemeshow S, May S. Applied Survival Analysis: Regression Modeling of
Time to Ewent Data. Second ed: Wildgterscience; 2008.

77



17.

78.

79.

80.

81.

82.

83.

84.

85.

86.

Cox DR, Snell EJ. A General Definition of Residuals. Journal of the Royal Statistical
Society Series Ebtatistical Methodology1968;30(2):248

Barlow WE, Prentice RL. Residuals for RelatiRisk Regression. Biometrikal988;
75(1):6574.

Therneau TM, Grambsch PM, Fleming TR. Marting#sed Residuals for Survival
Models. Biometrikal990; 77(1):1460.

Schaubel DE, Wei GHritting semiparametric additive hada models using standard
statistical software. Biometrical Journal2007;49-B819

Kim JH, Lee SY. A Goodnessf-fit test based on martingale residuals for the additive
risk model. The Korean Journal of Applied Statistics199%;89.

Howell AM. SAS Macro for the Additive Hazards Model: Medical College of Wisconsin,
Biostatistics; 2007.

Black TR. The effect of a transfer, lifting and repositioning (TLR) injury prevention
program on musculoske#dtinjury rates among direct care workers [Thesis]. Saskatoon:
University of Saskatchewan; 2009.

Howell AM, Klein JP. A SAS macro for the additive hazards regression model. American
Statistical Association1996 Proceedings tiie Statistical Computing Section1996:
282-7.

Rosato R, Ciccone G, Bo S PG, Merletti F, D. G. Evaluating cardiovascular mortality in
type 2 diabetes patients: an analysis based on competing risks Markov chains and
additive regression models. J Eval Clin Pract2007;13(3)8122

Therneau TM, Grambsch PM. Modeling Survival Data: Spriggniag, New York;

2000.

78



9. Appendix

Macro for the A a | eAdditise Hazards Model

/*

This maco is written by Alicia M. Howell, MS
For further information contact her at:
alicia@hp06.biostat.mcw.edu

%macro additive(dataset,siglevel,timeunit,effects,option,corarasitl,
outdat?);

* dataset: data set that contains time, censor indicator, covariates;
* siglevel: significance level,

* timeunit: unit of time;

* effects: the covariates;

* option: character vector defining which options are chosen;

* contrast: contrasvector (or matrix);

* outdatl: first output data set;

* outdat2: second output data set;

use &dataset;

read all var _num__into imldat;

goodrow=LOC(((imldat=.) [,+])=0); * searches for missing values;
missing=LOC(((imldat=.) [,+])"=0); * identi&s rows w/missing values;
imldat=imldat[goodrow,]; * deletes rows with missing values;

n=nrow(imldat); * number of rows inY;
col=ncol(imldat);

pprime=coil; * number of columns in Y (baseline + covariates);
p=pprimel,; * numiler of covariates;

t=imldat[,1]; * death or censored time;

c=imldat[,2]; * 1=uncensored, O=censored;

zero=j(n,1,0);

A=j(n,1,0); * pvector whose ith element is 1 if subject i

experiences event;
B=j(pprime,1,0); * estimates fdetas;
s=j(pprime,1,0); * decoy for Betas;
betatime=j(n,pprime,0); * Betas over time;
cov=j(pprime,pprime,0); * covariance for Betas;
cm=j(pprime,pprime,0); * decoy for covariance;

79



var=j(pprime,1,0); * variance of Betas;

stdev=j(ppime,1,0); * stdev of Betas;

LCI=j(pprime,1,0); * lower confidence bound for each estimate;
UCI=j(pprime,1,0); * upper confidence bound for each estimate;
sdtime=j(n,pprime,0); * stdev of Betas over time;
Lcontime=j(n,pprime,0); * lower conf bound over time for each est;
Ucontime=j(n,pprime,0); * upper conf bound over time for each est;
GLTEST=I(p);

constant=j(p,1,0);

GLTEST=constant || GLTEST;

K=j(p,p,0); * weight for U;

U=j(p,1,0); * test stat based oristhiector;
V=j(p,p,0); * variance matrix for U;
xy=j(n,2,0);

*Check to see if data is sorted in ascending order;
do i=2 to n;
if t[i-1]>t[i] then do;
print '‘Data not sorted by time in ascending order!’;
abort;
end,;
end,;

* Option [2,1] is for testing contrasts;
if &option[2,1]={y} then do;
rowcon=nrow(&contrast);
conK=j(rowcon,rowcon,0);
conU=j(rowcon,1,0);
conV=j(rowcon,rowcon,0);
end;

* Macro that checks if Y is singular;
%macro rankmat(time,estimtes);
rank=round(tace(ginv(Y)*Y));
if rank”=min(n,pprime) then do;
fintime=&time; * final time for estimates;
stop;
end;
%mend;

* Macro that creates confidence intervals for untied observations;
%macro confint(est,covarian,alpha);
%global stev sdtime LCI UCI Lcontime Ucontime;
zscore=probit(d&alpha/2);
do f=1 to pprime;
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stdev[f,]=sqrt(&covarian|f,f]);
sdtime[i,fl=sqgrt(&covarian(f,f]); * stdev for betas thru time;
LCI[f,]=&est][f,] -(zscore#stdeV]f,]);
UCI|[f,]=&est][f,]+(zscore#stlev[f,]);

Lcontime[i,f]=LCI[f,1];

Ucontime[i,f]=UCI|[f,1];

end,;

% mend;

* Macro that creates confidence intervals for tied observations;

%macro conftied(est,covarian,alpha);

%global stdev sdtime LCI UCI Lcontime Ucontime;

zscore=probit(i&alpha/2);

do ff=i to jj;

do f=1 to pprime,;
stdev[f,]=sqrt(coVv[f,f]);
sdtime[ff,fl=sqrt(&covarian[f,f]);
LCI[f,]=&est][f,] -(zscore#stdeV]f,]);
UCI|[f,]=&est[f,]+(zscore#stdeV[f,]);
Lcontime[ff,f]=LCI[f,1];
Ucontime[ff,f]=UCI[f,1];

end;

end;

%mend;

* Creating Y matrix;
Y=j(n,pprime,0);
Y[,1]=1; * baseline column is 1s;
do g= 2 to pprime;
Y[,q]=imldat[,q+1];
end;
* Computing the estimates:;
do i=1to (Rr1);

if t[i]=t[1] then do;
s[,1]=0;cm[,1]=0;
end;

else do;
s[,1]=BJ,1];cm=cov;
end;

* |f time(i) is not equal to time(i+1):;
if t[i]*=t[i+1] then do;
if c[i]=0 then do; * for censored observation;
B=s;
do f=1 to pprime;
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betatimel[i,f]=BI[f,1];

end;
cov=cm;
K=K;
u=u;
V=V,
if &option[2,1]={y} then do;
conK=conK;
conU=conU;
conV=conV,
end;
%confint(B,cov,&siglevel);
Y[i,]=0;
%rankmat((t[i]),B);
end;

if c[i]>0 then do; * for uncensoretdgervation;
Ali]=1;
X=inv(Y *Y)*Y";
B=s+(X*A);

do f=1 to pprime;

betatimel[i,f]=BI[f,1];

end;
cov=cm+(X*(diag(A))*X");
K=inv(diag(GLTEST*inv(Y *Y)*GLTEST));
U=U+(K*GLTEST*X*A);
V=V+(K*GLTEST*X*diag(A)*X *GL TEST *K’);
if &option[2,1]={y} then do;
conK=inv(diag(&contrast*inv(Y *Y)*&contrast’));
conU=conU+(conK*&contrast*X*A);
conV=conV+(conK*&contrast*X*diag(A)*X *&contrast *conK");
end;
%confint(B,cov,&siglevel);
Y[i,]=0;
A[i]=0;
%rankmat((t[i]),B);
end;

end;

* |f time(i) is equal to time(i+1):;
if t[i]=t[i+1] then do;
d=c[i]+c[i+1];
do j=i+2 to n;
if t[i]=t[j] then do;
d=d+c[j]; *dis the # of uncensored cases at time(i);
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end;

else if t[i]*=t[j] then do;

i=-1;

=n;
end;
end;

* Jj is the last case number that is tied at time(i);

if d=0 then do; * for the censored tied times;

B=s;
do ff=i to jj;
dof=1top

prime;

betatime[fff]=B][f,1];

end;

end;
cov=cm;
K=K;
u=u;
V=V,
if &option[2

,1]1={y} then do;

conK=conK;
conU=conU:;
conV=conV,

end;

%conftied(B,cov,&siglevel);

do m=ito jj;
Y[m,]=0;
end;

i=Jj;

%rankmat((t[i]),B);

end;

if d>0 then do; * for the uncensored tied times;

do dd=i to jj

if c[dd]=1 then A[dd]=1;

end;

X=inv(Y *Y)*Y";

B=s+(X*A);
do ff=ito jj;

do f=1 to pprime;
betatime][ff,f]=B[f,1];

end;
end;

cov=cm+(X*(diag(A))*X");
K=inv(diag(GLTEST*inv(Y ™*Y)*GLTEST"));
U=U+(K*GLTEST*X*A);
V=V+(K*GLTEST*X*diag(A)*X *GLTEST *K");

if &option[2,

1]={y} then do;

conK=inv(diag&contrast*inv(Y *Y)*&contrast’));

83



conU=conU+(conK*&contrast*X*A);
conV=conV+(conK*&contrast*X*diag(A)*X *&contrast *conK");
end,;
%conftied(B,cov,&siglevel);
do m=ito jj;
Y[m,]=0;
A[m]=0;
end;
i=i;
%rankmat((t[i]),B);
end;
end;

end;

fincase=i; * final case number, where estimates are still estimable;
restime=t[1:fincase,]; * restricted time interval for estimates;
Lcontime=Lcontime[1:fincase,];

Ucontime=Ucontime[1:fincase,];

betatme=betatime[1:fincase,];

sdtime=sdtime[1:fincase,];

* Create BStime which contains parameter estimates & standard deviations
over time;
BStime=j(fincase,2*pprime+1,0);
BStime[,1]=restime; * first column is time;
BStime[,2]=betatime[,1]; * second column is BO estimate;
BStime[,3]=sdtime[,1]; * third column is standard deviation(BO);
do i=2 to pprime;
BStime[,i*2]=Betatimel[,i]; * even columns are B estimates;
BStime[,i*2+1]=sdtimel,i]; * odd columns are st.dev;
end;
BStime=BStime[1:fincase,]; * eliminates final rows where estimate is
not estimable (YprimeY not full rank);

* GLOBAL TEST;
gltstat=U *inv(V)*U;
zstat=sqgrt(gltstat);
dfgltest=p;
pval=1-probchi(gltstat,dfgltest);
coll={"Chi-Square"};
col2={"d.f"};
col3={"p-value"};
timecol={"Time"};
lab={""};
blankcol={""};
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mattrib restime colname=timecol label=lab;

mattrib fintime colname=blankcol label=lab format=4.2;
mattrib gltstat colname=coll label=lab format=10.4;
mattrib dgltest colname=col2 label=lab format=3.;
mattrib pval colname=col3 label=lab format=6.4;

* INDIVIDUAL effects;
indchi=j(p,1,0);
indpval=j(p,1,0);
do i=1 to p;
indchi[i|=U[il##2/V[i,i];
indpval[i]=1-probchi(indchi[i],1);
end;
inddf=j(p,1,1);
cold={"Effect"};
mattrib indchi colname=coll label=lab format=10.4;
mattrib inddf colname=col2 label=lab format=3.;
mattrib indpval colname=col3 label=lab format=6.4;
mattrib &effects colname=col4 label=lab;

* contrasts;
if &option[2,1]={y} then do;
statcon=conU *inv(conV)*conU;
dfcon=rowcon;
pvalcon=2Xprobchi(statcon,dfcon);
mattrib statcon colname=coll label=lab format=10.4;
mattrib dfcon colname=col2 label=lab format=3.;
mattrib pvalcon colname=col3 label=lab format=6.4;
rowl={"Contrast Matrix"};
mattrib &contrast rowname=rowl label=lab;
end;

print ' Additive Hazards Model '

mattrib n colname=lab label=lab;

misnames={"Case #"};

mattrib missing colname=misnames label=lab;

if nrow(missing)>0 then do;

missing=t(missing);

print 'The following observations have missing values and are excluded
from analysis:', missing,;

print n 'observations used in analysis.";

end;

else do;

print 'No missing data: all observations were used in analysis.";
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print n ‘observations used.;

end,

print 'Estimates are restricted to the time interval O to' fintime,;
print ' Global Test B

print gltstat dfgltest pval;

print™ """

print ' Analysis of Variance
print &effects indchi inddf indpval,
print™ """

* Printing contrast output;
if &option[2,1]={y} then do;
print ' Test of Linear Combinations  ';
print &contrast;
print statcon dfcon pvalcon;
end;

* Printing beta estimate, standard deviation at each time;
if &option[1,1]={y} then do;
endcount=2*pprime;
cl={"Beta"},
c2={"Standard Deviation"};
mattrib parname colname=blankcol label=lab;
mattrib betaspr colname=c1 label=lab format=10.4;
mattrib ¢devspr colname=c2 label=lab format=10.4;
i=0;
temp=t(&effects);
tempnew='Baseline’ || temp;
do i=2 to endcount by 2;
betaspr=BStimel,i];
stdevspr=BStime[,i+1];
Fitl;
parname=tempnewl,j];
print ‘Cumulative estimate and standard e#en for:' parname;
print restime betaspr stdevspr;
end;
end;

* Line Plots;
if &option[4,1]={y} then do;
xy=j(fincase,2,0);
xy[,1]=restime;
temp=t(&effects);
names='Baseline' || temp;
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do gg=1 to pprime;
xy[,2]=betatime[,gq];
cal pgraf(xy,™',&timeunit,names[,gg]);
end;
end;

* Creating first output dataset;
if &option[3,1]={y} then do;
NEW1= restime || betatime || sdtime || Lcontime || Ucontime;
create &outdatl from NEW1,
append from NEW1,;
end;

* Creatingsecond output dataset;
if &option[5,1]={y} then do;
NEW2=U || V;
create &outdat2 from NEW2;
append from NEW?2;
end;

%mend;
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Macro for the Lin and Ying Additive Hazards Model

/******************************************/

I* */

Ling & Yingb6s's additive model
/¥ This macro also produces survival */

[*  estimation for a given patient. */

I* */

/********************************* *********/

%macro est(indata, time, event, covlist, zvec);

/* Find out unique event times/
proc sort data=&indata out=tempdata; by &time descending &event; run;

data etime;
set tempdata; by &time descending &event;
if first.&time;
if &event;
keep &time;
run;

data otime;
set tempdata; by &time;
if first.&time;
keep &time;

run;

proc iml;
use &indata;
read all var {&time} into time;
read all var {&event} into event;
read all var {&covlist} into zmat;
close &indata;

use etime;

readall var {&time} into etime;
close etime;
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etime=0//etime;

use otime;
read all var {&time} into otime;
close otime;

otime=0//otime;

numobs=nrow(time);
numetime=nrow(etime);
numotime=nrow(otime);
numcov=ncol(zmat);

Amat=j(numcov,numcov,0);
Bmat=j(numcov,numcov,0);
Uvec=j(1,numcov,0);
ybar=j(numetime,1,0);

do i=2 to numetime;

sumy=0;
sumyz=j(1,numcov,0);
do j=1 to numobs;
if time[j]>=etime[i] then do;
sumy=sumy+1;
sumyz=sumyz+zmat([j,];
end,;
end;
ybar[i]=sumy;

do j=1 to numobs;
if time[j]=etime[i] & event[j]=1 then do;
ztemp=zmat[j,Jjsumyz/sumy;
Uvec=Uvec+zmat[jisumyz/sumy;
Bmat=Bmat+t(ztemp)*ztemp;
end;
end;
end;

ybar=j(numotime,1,0);
do i=2 to numotime;
sumy=0;
sumyz=j(1,numcov,0);
do j=1 to numobs;
if time[j]>=otime[i] then do;
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sumy=sumy+1;
sumyz=sumyz+zmat[j,];
end,
end;
ybar[i]=sumy;

zz=j(numcov,numcov,0);
do j=1 to numobs;
if time[j]>=otime[i] thendo;
ztemp=zmat[j,jsumyz/sumy;
zz=zz+t(ztemp)*ztemp;
end;
end;
Amat=Amat+zz*(otime[i}otime[i-1]);
end;

print Amat Bmat;
*print Uvec;

beta=Uvec*inv(Amat);
sigma=inv(Amat)*Bmat*inv(Amat);

create best from beta;
append fronbeta;
close best;

create cov from sigma;
append from sigma;
close cov;

se=j(1,numcov,0);

do i=1 to numcov;
se[1,i]=sqrt(sigmali,i]);

end;

out=beta//se;
create estout from out;

append from out;
close estout;

/* Find cumulativebaseline hazard/
bzmat=j(numobs,1,0);
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/*

*/

do i=1 to numobs;
bzmat[i]=zmat[i,]*t(beta);
end;

chaz=j(numotime,1,0);
ctemp=0;
do i=2 to numotime;

yhaz=0;
dn=0;
do j=1 to numobs;
if time[j]>=otime[i] then yhaz=yhaz+bzmat[j];
if time[j]=otime[i] & event[j]=1 then dn=dn+1;
end;
yhaz=yhaz*(otime[{otime[i-1]);

ctemp=ctemp+(chyhaz)/ybar[i];
chaz[i]=ctemp;
end;

out=otime||chaz;

create haz from out[colname={"time" 'base_chaz'}];
append from out;

close laz;

zvec={&zvec};

bz=beta*t(zvec);
bzt=otime*bz;

hazz=chaz+bzt;

surv=j(numotime,1,0);
do i=1 to numotime;

surv[il=expthazz[i);
end;

yz=j(numotime,numcov,0);
ybar=j(numotime,1,0);
do i=2 to numotime;

yhaz=0;
dn=0;
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do j=1 to numobs;
if time[j]>=otime[i] then do;
ybar[i]=ybarl[i]+1;
yz[i,]=yz[i,]+zmat][j,];
end;
end,
end;

Gtz=j(numotime,numcov,0);

Dt=j(numotime,numcov,0);

dtemp=j(1,numcov,0);

term1=j(numotime,1,0);

t1temp=0;

do i=2 to numtime;
Gtz[i,|=Gtz[i-1,]+(zveeyz[i,)/lybar[i])*(otimel[i] -otime[i-1]);

do j=1 to numobs;
if time[j]=otime[i] & event[j]=1 then do;
dtemp=dtemp+(zmat[syz[i,]/ybar[i])/ybar[i];
tltemp=tltemp+1/ybar[il/ybar[i];
*obst=time[j]; obse=eent][j];
*print t1ltemp obst obse j;
end;
end;
Dt[i,]=dtemp;
terml[i]=tltemp;
end,

svar=j(numotime,1,0);

term2=j(numotime,1,0);

term3=j(numotime,1,0);

do i=2 to numotime;
term2[i]=Gtz[i,]*inv(Amat)*Bmat*inv(Amat)*t(Gtz[i,]);
term3[i]=Gtz[i,]*inv(Amat)*t(Dt[i,])#2;
svar[i]=surv[ij#surv[iJ#(terml[i]+term2[i]+term3Ji]);

end;

survSE=svar##0.5;
*print otime ybar surv terml term2 term3 svar;
out=otime||chaz||surv]||survSE;

create adjsurv from out[colname={'time' 'baselichaz' 'surv' 'SE'}];
append from out;
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close adjsurv;
quit;

proc print data=best; run;

proc print data=cov; run;
proc print data=adjsurv; run;

%mend;

Code for the Lin and Ying Additive Hazards model

Options mprint=on notes source &mnocenter ndate;

* For SHR & ROQHR,;

* Creaet Permanent data set for Saskatoon Health Region (SHR) & Regina Qu'Appelle Health
Region;

libname SHR_RQHR '@Documents and Settingas86IVly
Document¥MSc_ThesidnjuryDatdNewSelectedData’;

* libname SHR 'GDocuments amh Settingssas86My
Document¥MSc_ThesidnjuryDatdNewSelectedData’;

* libname RQHR 'GDocuments and Settingas86XMy
Document¥MSc_ThesidnjuryDatdNewSelectedData’; *For Department;
* libname SHR_RQHR 'MMsc_Thesidnjury-DataTim\Selected Injury
DatdaNewSelectedData’; * For USB Port;

Run;

%include 'Ci\Documents and Settingsis86MMy Document¥MSc_ThesisSurvival
AnalysidAdditive ModelLY\LY_Surv.txt';

Title "Lin and Ying's Additive Model";

Dataly One;
set SHR_RQHR.Additive_072010_04;
if time=0 then time®.1;
if time=. then delete;
if Age=0then Age®.1;
if Age=. then Age®.1;
Run;

Data SHR_RQHR.ly_One;
Setly_One;
Run;

* options mprint mlogic symbolgen;

93



%est(SHR_RQHR.ly_One, Time, Censor, SHR1 Nurses_Nurse_Aide Back_Neck13Higt,
quit;

Data Name,;
Item="Estimate’; output;
ltem="SE'; output;

Run;
Data estout;

merge Name estout (rename = (Coll=SHR Col2=Nurses Col3=Backlnjuries));
Run;

proc transposedata=estout out= estout_tran;
id item;
Run;

ods listing close;
ods rtf file="C\Documents and Settingas868My DocumentiMSc_ThesisSurvival
AnalysisAdditive ModelLY \LYOutpuf\LYFinal 111310.rtf"
Title 'Estimate of the £Y ModelFinal’;
Data estout_new;
set estout_tran (rename=(_name_=Variable));
Chisg=(estimate/se)?Z;
Pr=1-probchi(chisql);
Llt=estimatel.96'se; * For Lower CI;
Ult=estimate+.96*se; * for Upper CI;

Proc print ;
Run;

ods rtf close;
ods listing;
Title;

Data_null_;

set adjsurv;

slow=surv1.96"se;

sup=surv+t.96se;

file 'C:\Documents and Settingsas86¥My DocumentiMSc_ThesisSurvival
AnalysidAdditive ModelLY\LY_ Output_111310.txt",

put time surv slow sup;

format _all 7.4
run;
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DataLY_Surv_ClI,

set adjsurv;

slow=surv1.96'se;

sup=survt.96se;

* file 'C:\Documents and Settingas868My Document8MSc_ThesisSurvival
AnalysisAdditive ModelLY\LY_Output_111310_ 01.txt"

put time surv slow sup;

format _all_7.4;

run;
/*
Data LY_Plot;

Set LY Surv_CI,

If time>65 then delete;
Run;

Title "Fugure Lin and Ying's Additive Model";

axisl lab&=(j=c 'Month’) minor=none;
axis2 label=(a=90 j=c "Estimated Cumulative Hazard Rate for SHR") minor=none;

Symboll interpol=stepjr c=black |I=1 value=none;
Symbol2 interpol=stepjr c=blue |=3 value=none;
Symbol3 interpol=stepjr c=red =3 value=none,;

procgplot data=LY_Plot;
plot surv*time slow*time sup*time/overlay haxis=axis1 vaxis=axis2;
Run;

Quit;

/*
proc print; run;
*

*/
/* For Univariate LY Model */

Proc contentsdata=SHR_RQHR.ly_one;
Run;

[* For Intervention and Control (SHR1) */
%est(SHR_RQHRIly One, Time, Censor, SHR1),
quit;

DataLY_SHR;
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Item="Estimate'; output;
ltem="SE'"; output;
Run;

Data estout_ SHR;
merge LY_SHR estout (rename = (Col1=SHR));
Run;

proc transposedata=estout SHR out= estout_ SHR_tran;
id item;
Run;

[* For Age */
%est(SHR_RQHR.ly_One, Time, Censor, Age8);
quit;

DatalLY_Age;
Item="Estimate’; output;
ltem="'SE'; output;

Run;

Data estout_Age;
merge LY_Age estout (rename = (Coll=Age));
Run;

proc transposedata=estout_Age out= estout_Age_tran;
id item;
Run;

/* For Female */
%est(SHR_RQHR.ly_One, Time, Censor, Femdlg,
quit;

DataLY_Female;
Item="Estimate’; output;
ltem='SE'; output;

Run;

Data estout_Female;
merge LY_SHR estout (rename = (Coll=Female));
Run;

proc transposedata=estout_Female outstout_Female_tran;
id item;
Run;
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/* For Occupation: Nurses and Nurses Aide (NNA) */
%est(SHR_RQHR.ly_One, Time, Censor, Nurses_Nurse_Aijle,
quit;

DataLY_NNA,;
Item="Estimate’; output;
ltem="'SE'; output;

Run;

Data estout_NNA;
merge LY_NNA estou(rename = (Col1=NNA));
Run;

proc transposedata=estout_ NNA out= estout_NNA _tran;
id item;
Run;

[* For Body Parts: Back, Neck & Shoulders (BNS) */
%est(SHR_RQHR.ly_One, Time, Censor, Back_Neck_Shd,
quit;

DataLY_BNS;
Item="Estimate’; output;
ltem='SE'; output;

Run;

Data estout_ BNS;
merge LY_BNS estout (rename = (Col1=BNS));
Run;

proc transposedata=estout_ BNS out= estout BNS _tran;
id item;
Run;

/* For Hospital Size: Large */
%est(SHR_RQHR.ly_One, Time, Censor, Lardg,
quit;

DatalLY Large;
Item="Estimate’; output;
ltem='SE'; output;

Run;

Data estout_Large,;

merge LY _Large estout (rename = (Coll=Large));
Run;
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proc transposedata=estout_Large out= estout_Large_tran;
id item;
Run;

[* For Hospital Size: Medium */
%est(SHR_RQHR.ly_@e, Time, Censor, Mediurb);
quit;

DataLY_Medium;
Item="Estimate’; output;
ltem="'SE'; output;

Run;

Data estout_Medium;
merge LY_Medium estout (rename = (Coll=Medium));
Run;

proc transposedata=estout_Medium out= estout_Medium_tran;
id item;
Run;

/* For Hospital Size: Small */
%est(SHR_RQHR.ly_One, Time, Censor, SMdl);
quit;

DataLY_Small;
Item="Estimate’; output;
ltem='SE'; output;

Run;

Data estout_Small;
merge LY_Small estout (rename = (Coll=Small));
Run;

proc transposedata=estout_1Ball out= estout_Small_tran;
id item;

Run;

/* For Hospital Size: Large & Small */

%est(SHR_RQHR.ly_One, Time, Censor, Large Snall);
quit;

DataLY_Large Small;

Item="Estimate'; outpult;
ltem='SE'; output;
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Run;

Data estout_Large Small;
merge LY Large_Small estout (rename = (Coll=Large Col2=Small));
Run;

proc transposedata=estout_Large_Small out= estout_Large_Small_tran;
id item;
Run;

ods listing close;
ods rtf file= 'C\Documents and Settingsis868My Document§MSc_ThesisSurvival
AnalysisAdditive ModelLY\LYOutputlLY_Uni_111310.rtf;
Title 'Estimate of the £Y ModelUnivariate’;
Data estout. SHR_new;

set estout_Age_tran estout_Female_tran estout. SHR_tran estout NNA tran
estout_ BNS_tran estout_Large_tran estout_Medium_tran estout_Small_tran
estout_Large_Small_tran;

rename _nhame_=Variable;

Chisqg=(estimate/se)?Z,

Pr=1-probchi(chisql);

Llt=estimatel.96'se; * For Lower CI,;

Ult=estimate+.96*se; * for Upper CI;

Proc print ;
Run;

Title;

ods rtf close;
ods listing;

[* L-Y Multivariate wih Siginificant Variable: SHR1 NNA BNS Large Small */

%est(SHR_RQHR.ly_One, Time, Censor,SHR1 Nurses_Nurse _Aide Back Neck Shid Large
Small,11111);
quit;
DataLY_AlI5;
Item="Estimate'; output;
ltem='SE'; output;
Run;

Data estout_AlI5;
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merge LY AlI5 estout (rename = (Col1=SHR Col2=NNA Col3=BNS Col4=Large
Col5=Small));
Run;

proc transposedata=estout_AlI5 out= estout_AlI5_tran;
id item;
Run;

ods listing close;
ods rtf file= "C\Documents and Settingas86dMy DocumentiMSc_ThesisSurvival
AnalysisAdditive ModelLY \LYOutpuf\LY Multi_AllI5 111310.rtf"
Title 'Estimate of the £Y ModelMultivariate All 5 Variable',
Data estout. SHR_new;
set estout_All5_tran;
rename name_=Variable;
Chisg=(estimate/se)?Z,
Pr=1-probchi(chisql);
Llt=estimatel1.96*se; * For Lower ClI,
Ult=estimate+.96*se; * for Upper CI;

Proc print ;
Run;

Title;
ods rtf close;

ods listing;

R Code for Goodness of Fit (Ling and Ying Additive Hazards Models)

# Arjas Plot

# At the University

# postscript("d:/sabuj/arjas.ps" fimontal=F)
postscript ("C:/Documents and Settings/sas862/My Documents/MSc_Thesis/Survival
Analysis/SASMacro-Additive
Model/LY/GOF/Additive_LY/Output/arjas_shr.ps",horizontal=F)
par(mfrow=c(3,2),oma=c(1,1,3,1),font=1,font.main=1)

# Arjas for Health Regio

#At the University

matl<matrix(scan("C:/Documents and Settings/sas862/My
Documents/MSc_Thesis/Survival Analysis/SANBcro-Additive
Model/LY/GOF/Additive_LY/Output/SHR1.txt"),ncol=7,byrow=TRUE)

# matl < matrix(scan("d:/sabuj/SHR1.txt"),ncol=7,byrow=TEY
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#At Home
# matl < matrix(scan("d:/sabuj/SHRL1.txt"),ncol=7,byrow=TRUE)

rit <- matl[,1]

nt0 < matl[,2]
htz0 < matl[,3]
mart0 < matl[,4]

ntl < matl[,5]
htz1l < matl[,6]
martl < matl[,7]

xlim1 <- ¢(0,80)
ylim1 <- ¢(0,180)

plot(nt0,htz0,type="s",bty="I",Ity=1,lwd=1,xlim=xlim1,ylim=ylim1,xlab="",ylab="",xaxt="n
" yaxt="n",axes=F)

axis(1,pos=0,at=c(0,20,40,60,80),cex=0.3)

axis(2,pos=0,at=c(0,20,40, 60, 80,100,120,150,180),cex=0.3)

par(new=T)
plot(ntl,htz1,type="s",bty="I",lty=2wd=1,xlim=xlim1,ylim=ylim1,xlab="",ylab="",xaxt="n
" yaxt="n",axes=F)

title(xlab="Number of Repeated Injuries",ylab="Expected Cumulative Hazard Rates",
cex=0.5)

title(main="Arjas Plot for Intervention and Control Group",cex=0.4)

charvec <c("Control", "Intervention")

legend(0, 80, charvec, lty=c(0,1),lwd=c(1,1),bty="n", adj=0,cex=1)

# Arjas for Back, Neck and Shoulders

postscript ("C:/Documents and Settings/sas862/My Documents/MSc_Thesis/Survival
Analysis/SASMacro-Additive
Model/LY/GOF/Additive_LY/Outpw/arjas_BNS.ps",horizontal=F)
par(mfrow=c(3,2),oma=c(1,1,3,1),font=1,font.main=1)

# matl < matrix(scan("d:/sabuj/BNS.txt"),ncol=7,byrow=TRUE)

# At the University

matl < matrix(scan("C:/Documents and Settings/sas862/My
Documents/MSc_Thesis/Survival Analg/SASMacro-Additive
Model/LY/GOF/Additive_LY/Output/BNS.txt"),ncol=7,byrow=TRUE)

rit <- matl[,1]
nt0 < matl[,2]

htz0 < matl1[,3]
martO < matl[,4]
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ntl < matl[,5]
htzl < matl[,6]
martl < matl[,7]

plot(nt0,htz0,type="s",bty="I",lty=1,lwd=1,xlim=xin1,ylim=ylim1,
xlab="",ylab="",xaxt="n",yaxt="n",axes=F)

axis(1,pos=0,at=c(0,20,40,60,80),cex=0.3)

axis(2,pos=0,at=c(0,20,40, 60, 80,100,120,150,200),cex=0.3)

par(new=T)

plot(ntl,htz1,type="s",bty="1",lty=2,lwd=1,xlim=xlim1,ylim=ylim1,
xlab="",ylab=""xaxt="n",yaxt="n",axes=F)

title(xlab="Number of Repeated Injury",ylab="Expected Cumulative Hazard Rates",

cex=0.5)

title(main="Back, Neck Shoulders with Other Body Parts",cex=0.4)

charvec <c("Others","BNS")

legend(0, 80, charvec, lty=c(0,1),lwd=c(1y="n", adj=0,cex=1)

# Arjas for Nurses and Nurses Aide
# matl < matrix(scan("d:/sabuj/NNA.txt"),ncol=7,byrow=TRUE)
# At the University

postscript ("C:/Documents and Settings/sas862/My Documents/MSc_Thesis/Survival
Analysis/SASMacro-Additive

Model/LY/GOF/Additive_LY/Output/arjas_ NNA.ps",horizontal=F)
par(mfrow=c(3,2),oma=c(1,1,3,1),font=1,font.main=1)

# At the University

matl < matrix(scan("C:/Documents and Settings/sas862/My
Documents/MSc_Thesis/Survival Analysis/SABcro-Additive
Model/LY/GOF/Addtive_LY/Output/NNA.txt"),ncol=7,byrow=TRUE)

rit <- matl[,1]

nt0 < matl[,2]
htz0 < matl1[,3]
mart0 < matl[,4]

ntl < matl[,5]
htzl < matl[,6]
martl < matl[,7]

plot(nt0,htz0,type="s",bty="1",Ity=1,lwd=1,xlim=xlim1,ylim=ylim1,
xlab="",ylab="",xaxt"n",yaxt="n",axes=F)
axis(1,pos=0,at=c(0,20,40,60,80),cex=0.3)

axis(2,pos=0,at=c(0,20,40, 60, 80,100,120,150,200),cex=0.3)
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par(new=T)

plot(nt1,htz1,type="s",bty="I",Ity=2,lwd=1,xlim=xlim1,ylim=ylim1,
xlab="",ylab="",xaxt="n",yaxt="n",axes=F)

title(xlab="Number of Repeated Injury",ylab="Expected Cumulative Hazard Rates",

cex=0.5)

title(main="Nurses and Nurses Aide with Other Occupation”,cex=0.4)

charvec <c("Others","NNA")

legend(0, 80, charvec, lty=c(0,1),lwd=c(1,1),bty="n", adj=0,cex=1)

mtext("ArjasPlot- common beta, different baselines”,
NORTH<-3, line=1, adj=0.5, cex=1.0, font=1,col="black", outer=TRUE)

dev.off()

# Martingale Plots

# postscript("d:/sabuj/mart.ps”,horizontal=F)

# par(mfrow=c(3,2),oma=c(1,1,3,1),font=1,font.main=1)

# matl < matrix(scan(d:/sabuj/SHR1.txt"),ncol=7,byrow=TRUE)

# Martingale Plots For Health Regieintervention/Control

postscript ("C:/Documents and Settings/sas862/My Documents/MSc_Thesis/Survival
Analysis/SASMacro-Additive
Model/LY/GOF/Additive_LY/Output/Mart_shr.ps",horizontal=F)
par(mfrow=c(3,2),oma=c(1,1,3,1),font=1,font.main=1)

#At the University

matl<matrix(scan("C:/Documents and Settings/sas862/My
Documents/MSc_Thesis/Survival Analysis/SABcro-Additive
Model/LY/GOF/Additive_LY/Output/SHR1.txt"),m@=7,byrow=TRUE)

rit <- matl[,1]
nt0 < matl[,2]
htz0 < matl1[,3]
mart0 < matl[,4]
ntl < matl[,5]
htzl < matl[,6]
martl < matl[,7]

xliml <- ¢(0,7.5)
yliml <- ¢(-15,15)

plot(rit,martO,type="s",bty="1",Ity=1,lwd=1,xlim=xlim1,ylim=ylim1,
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xlab="",ylab="",xaxt="n",yaxt="n",axes=F)
axis(1,pos=.04,at=c(0,2,4,6,8,10),cex=0.3)
axis(2,pos=0,at=€0-15,-10,-5, 0,5,10,15,20),cex=0.3)
title(xlab="Month",ylab="Martingale Residuals", cex=0.5)
title(main="Repeated Injury for Intervention and Control GrqueX=0.4)

# Martingale Plots For Bak, Neck & Shoulders
# matl < matrix(scan("d:/sabuj/BNS.txt"),ncol=7,byrow=TRUE)

postscript ("C:/Documents and Settings/sas862/My Documents/MSc_Thesis/Survival
Analysis/SASMacro-Additive

Model/LY/GOF/Additive_LY/OutputMart_ BNS.ps",horizontal=F)
par(mfrow=c(3,2),oma=c(1,1,3,1),font=1,font.main=1)

#At the University

matl<matrix(scan("C:/Documents and Settings/sas862/My
Documents/MSc_Thesis/Survival Analysis/SAacro-Additive
Model/LY/GOF/Additive_LY/Output/BNS.txt"),00l1=7,byrow=TRUE)

rit <- matl[,1]

nt0 < matl[,2]
htz0 < matl1[,3]
mart0 < matl[,4]

ntl < matl[,5]
htzl < matl[,6]
martl < matl[,7]

plot(rilt,martl,type="s",bty="I",Ity=1,lwd=1,xlim=xlim1,ylim=ylim1,
xlab="",ylab="",xaxt="n",yaxt="n",axes=F)

axiq1,pos=0,at=c(0,2,4,6,8,10),cex=0.3)

axis(2,pos=0,at=€p0-15,-10,-5, 0,5,10,15,20),cex=0.3)

title(xlab="Months",ylab="Martingale Residuals”, cex=0.5)

title(main="BNS- Back, Neck and Shoulders with Otheers Body Parts",cex=0.4)

#Martingale Plots For Nses and Nurses Aide
# matl < matrix(scan("d:/sabuj/NNA.txt"),ncol=7,byrow=TRUE)

postscript ("C:/Documents and Settings/sas862/My Documents/MSc_Thesis/Survival
Analysis/SASMacro-Additive

Model/LY/GOF/Additive_LY/Output/Mart_ NNA.ps",horizontal=F)
par(mfrow=c(3,2),oma=c(1,1,3,1),font=1,font.main=1)

#At the University

104



matl<matrix(scan("C:/Documents and Settings/sas862/My
Documents/MSc_Thesis/Survival Analysis/SA&cro-Additive
Model/LY/GOF/Additive_LY/Output/NNA.txt"),ncol=7,byrow=TRUE)

rit <- matl[,1]

nt0 < matl[,2]
htz0 < matl1[,3]
mart0 < matl[,4]

ntl < matl[,5]
htz1l < matl[,6]
martl < matl[,7]

plot(rit,martl,type="s",bty="1",lty=1,lwd=1,xlim=xlim1,ylim=ylim1,
xlab="",ylab="",xaxt="n",yaxt="n",axes=F)
axis(1,pos=0,at=c(0,2,4,6,8,10),cex30.3
axis(2,pos=0,at=€p0-15,-10,-5, 0,5,10,15,20),cex=0.3)
title(xlab="Months",ylab="Martingale Residuals”, cex=0.5)

title(main="NNA - Nurses and Nurses Aide with Others Occupation”,cex=0.4)

mtext("Martingale Residual Process Pl@bmmon beta, diffemt baselines”,
NORTH<3, line=1, adj=0.5, cex=1.0, font=1,col="black", outer=TRUE)

dev.off()
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UNIVERSITY OF
SASKATCHEWAN

February 24, 2010

Sabuj Sarker

M.Sc. Candidate

Department of Community Health and Epidemiology
RUH-2708

107 Wiggins Road

Saskatoon, SK, 87N 5E3

Dear Mr. Sarker:

Thank you for your email requesting information about using data from a previous study
conducted by Mr. Timothy R. Black for your master’s thesis. Accordingly, as outlined in
Article 3.3, 3.3 and 3.4 of the Tri-Council Policy Statement: Ethical Conducet for the
Research involving Humans, 1998 (with 2000, 2002 updates) states that if personally
identifiable information is accessible through any linkage with the data sample, REB
approval shall be sought for the “secondary use™ of data. Since you have assured our
office that the data sets have been de-identified, this project is not subject to further ethics
review,

[t should be noted that although your project is exempt of ethics review; vour project
should be conducted in an ethical manner and in accordance with the information that
you submitted.

It should be further noted that any deviation from the eriginal methodology and/or
research question should be brought to the attention of the Biomedical Research Ethics
Board for further review.

Notwithstanding research investigators must ensure that the project is carried out in
keeping with the Saskatchewan Health Information Protection Act (HIPA).

Sincerely.

™)

7 | o
N e ey
Gordon McKay, Ph.I, ¥ice-Chair
Biomedical Research¥thics Board
University of Saskatchewan
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ol WV Research Services Unit
Saskatoon Strategic Health Information & Planning Services (SHIPS)
( He alt Joanne Franko, Manager
Suite 300 Saskatoon Square
Reglon 41022 StE

Saskatoon, SK  S7K 5T6
Phone: 306.655.3356 Fax: 306.655.3373

DATE: November 22, 2005
TO: 'im Black, P.T., Community Health and Epidemiology, U of §

FROM: Joanne Franko
Manager, Research Services Unit

RE: RESEARCH PROJECT ETHICS COMMITTEE (EC)#: 2005-168
PROJECT NAME: The Effect of a Transfer, Lifting and Repositioning Program on
Musculoskeletal Injury Rates among Healthcare Workers in Selected Facilities within
the Saskatoon Health Region.
PROTOCOL #: N/A

Saskatoon Health Region is pleased to provide you with operational approval of the above-mentioned
research project.

Please advise me when the data collection phase of the research project is completed. I would also
appreciate receiving a summary of the results for this research project. As well, any publications or
presentations that result from this research should include a statement acknowledging the assistance of
Saskatoon Health Region.

1 would like to wish you every success with your project. If you have any questions, please contact our
office at 655-3351.

Yours truly,
'/?{) Mn) WG

Joanne Franko, M.S¢.
Manager. Research Services Unit

ce:  Dr. Syed Shab. Thesis Supervisor, Community Health and Epidemiology, U of S
Judy Metcalf, Manager, Occupational Health and Safety, SPH
Father Mare Miller, Mission Office, SPH
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